SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture[J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. DOI: 10.1007/s11390-020-0679-8 |
[1] |
Wang C, Horby P W, Hayden F G, Gao G F. A novel coronavirus outbreak of global health concern. The Lancet, 2020, 395(10223): 470-473. DOI: 10.1016/S0140-6736(20)30185-9.
|
[2] |
Wang D, Hu B, Hu C et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11): 1061-1069. DOI: 10.1001/jama.2020.1585.
|
[3] |
Lu Z, Lu S Y, Liu G et al. A pathological brain detection system based on radial basis function neural network. Journal of Medical Imaging and Health Informatics, 2016, 6(5): 1218-1222. DOI: 10.1166/jmihi.2016.1901.
|
[4] |
Yang J, Qiu X, Shi J P et al. A pathological brain detection system based on kernel based ELM. Multimedia Tools and Applications, 2018, 77(3): 3715-3728. DOI: 10.1007/s11042-016-3559-z.
|
[5] |
Lu S, Qiu X, Shi J P et al. A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS & Neurological Disorders-Drug Targets, 2017, 16(1): 23-29. DOI: 10.2174/1871527315666161019153259.
|
[6] |
Wang S H, Li P, Chen P et al. Pathological brain detection via wavelet packet Tsallis entropy and real-coded biogeography-based optimization. Fundamenta Informaticae, 2017, 151(1/2/3/4): 275-291. DOI: 10.3233/FI-2017-1492.
|
[7] |
Jiang X, Zhang Y. Chinese sign language fingerspelling recognition via six-layer convolutional neural network with leaky rectified linear units for therapy and rehabilitation. Journal of Medical Imaging and Health Informatics, 2019, 9(9): 2031-2038. DOI: 10.1166/jmihi.2019.2804.
|
[8] |
Szegedy C, Liu W, Jia Y et al. Going deeper with convolutions. In Proc. the 2015 IEEE Conference on Computer Vision and Pattern Recognition, June 2015, pp.1-9. DOI: 10.1109/CVPR.2015.7298594.
|
[9] |
Yu X, Wang S H. Abnormality diagnosis in mammograms by transfer learning based on ResNet18. Fundamenta Informaticae, 2019, 168(2/3/4): 219-230. DOI: 10.3233/FI-2019-1829.
|
[10] |
Zhang Y D, Satapathy S C, Zhu L Y et al. A seven-layer convolutional neural network for chest CT based COVID-19 diagnosis using stochastic pooling. IEEE Sensors Journal. DOI: 10.1109/JSEN.2020.3025855.
|
[11] |
Wu S, Wu X, Zhang Yet al. Diagnosis of COVID-19 by wavelet renyi entropy and three-segment biogeography-based optimization. International Journal of Computational Intelligence Systems, 2020, 13(1): 1332-1344. DOI: 10.2991/ijcis.d.200828.001.
|
[12] |
Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238. DOI: 10.1109/TPAMI.2005.159.
|
[13] |
Chung M, Bernheim A, Mei X et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology, 2020, 295(1): 202-207. DOI: 10.1148/radiol.2020200230.
|
[14] |
Maghdid H S, Ghafoor K Z, Sadiq A S et al. A novel AI-enabled framework to diagnose coronavirus COVID 19 using smartphone embedded sensors: Design study. arXiv:2003.07434, 2020. https://arxiv.org/abs/2003.07434, Dec. 2020.
|
[15] |
Wang L, Wong A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. arXiv:2003.09871, 2020. https://arxiv.org/abs/2003.09871, Dec. 2020.
|
[16] |
Al-Karawi D, Al-Zaidi S, Polus N, Jassim S. Machine learning analysis of chest CT scan images as a complementary digital test of coronavirus (COVID-19) patients. medRxiv. DOI: 10.1101/2020.04.13.20063479.
|
[17] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In Proc. the 25th International Conference on Neural Information Processing Systems, December 2012, pp.1097-1105. DOI: 10.1145/3065386.
|
[18] |
Shakarami A, Tarrah H, Mahdavi-Hormat A. A CAD system for diagnosing Alzheimer's disease using 2D slices and an improved AlexNet-SVM method. Optik, 2020, 212: Article No. 164237. DOI: 10.1016/j.ijleo.2020.164237.
|
[19] |
Wang R, Xu J, Han T X. Object instance detection with pruned Alexnet and extended training data. Signal Processing: Image Communication, 2019, 70: 145-156. DOI: 10.1016/j.image.2018.09.013.
|
[20] |
Szymak P, Gasiorowski M. Using pretrained AlexNet deep learning neural network for recognition of underwater objects. Na\v{s}e More, 2020, 67(1): 9-13. DOI: 10.17818/NM/2020/1.2.
|
[21] |
Guo C J, Xu Y L, Tian Z. Inversion of PM2.5 atmospheric refractivity profile based on AlexNet model from the perspective of electromagnetic wave propagation. Environmental Science and Pollution Research, 2020, 27(30): 37333-37346. DOI: 10.1007/s11356-020-07703-w.
|
[22] |
Zhao X Y, Dong C Y, Zhou P, Zhu M J, Ren J W, Chen X Y. Detecting surface defects of wind tubine blades using an Alexnet deep learning algorithm. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102A(12): 1817-1824. DOI: 10.1587/transfun.E102.A.1817.
|
[23] |
Xiao L, Yan Q, Deng S. Scene classification with improved AlexNet model. In Proc. the 12th International Conference on Intelligent Systems and Knowledge Engineering, Nov. 2017. DOI: 10.1109/ISKE.2017.8258820.
|
[24] |
Rakitianskaia A, Engelbrecht A. Measuring saturation in neural networks. In Proc. the 2015 IEEE Symposium Series on Computational Intelligence, Dec. 2015, pp.1423-1430. DOI: 10.1109/SSCI.2015.202.
|
[25] |
Gertych A, Swiderska-Chadaj Z, Ma Z et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep., 2019, 9(1): Article No. 1483. DOI: 10.1038/s41598-018-37638-9.
|
[26] |
Fukae J, Isobe M, Hattori T et al. Convolutional neural network for classification of two-dimensional array images generated from clinical information may support diagnosis of rheumatoid arthritis. Sci. Rep., 2020, 10(1): Article No. 5648. DOI: 10.1038/s41598-020-62634-3.
|
[27] |
Nguyen H D, Lloyd-Jones L R, McLachlan G J. A universal approximation theorem for mixture-of-experts models. Neural Computation, 2016, 28(12): 2585-2593. DOI: 10.1162/NECO_a_00892.
|
[28] |
Huang Y, Yang D, Wang K, Wang L, Fan J. A quality diagnosis method of GMAW based on improved empirical mode decomposition and extreme learning machine. Journal of Manufacturing Processes, 2020, 54: 120-128. DOI: 10.1016/j.jmapro.2020.03.006.
|
[29] |
Schmidt W F, Kraaijveld M A, Duin R P W. Feedforward neural networks with random weights. In Proc. the 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems, Aug. 30-Sept. 3, 1992. DOI: 10.1109/ICPR.1992.201708.
|
[30] |
Pao Y H, Park G H, Sobajic D J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 1994, 6(2): 163-180. DOI: 10.1016/0925-2312(94)90053-1.
|
[31] |
Kushwah G S, Ranga V. Voting extreme learning machine based distributed denial of service attack detection in cloud computing. Journal of Information Security and Applications, 2020, 53: Article No. 102532. DOI: 10.1016/j.jisa.2020.102532.
|
[32] |
Yager R R, Kreinovich V. Universal approximation theorem for uninorm-based fuzzy systems modeling. Fuzzy Sets and Systems, 2003, 140(2): 331-339. DOI: 10.1016/S0165-0114(02)00521-3.
|
[33] |
Scardapane S, Fierimonte R, Wang D H, Panella M, Uncini A. Distributed music classification using random vector functional-link nets. In Proc. the 2015 International Joint Conference on Neural Networks, July 2015. DOI: 10.1109/IJCNN.2015.7280333.
|
[34] |
Chaudhuri A. The minimization of empirical risk through stochastic gradient descent with momentum algorithms. In Proc. the 8th Computer Science On-line Conference on Artificial Intelligence Methods in Intelligent Algorithms, April 2019, pp.168-181. DOI: 10.1007/978-3-030-19810-7_17.
|
[35] |
Dean J, Corrado G, Monga R et al. Large scale distributed deep networks. In Proc. the 25th International Conference on Neural Information Processing Systems, December 2012, pp.1223-1231.
|
[36] |
Rajaraman S, Candemir S, Kim I, Thoma G, Antani S. Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs. Applied Sciences, 2018, 8(10): Article No. 1715. DOI: 10.3390/app8101715.
|
[37] |
Ardila D, Kiraly A P, Bharadwaj S et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 2019, 25(6): 954-961. DOI: 10.1038/s41591-019-0447-x.
|
[38] |
Chae K J, Jin G Y, Ko S B, Wang Y, Zhang H, Choi E J, Choi H. Deep learning for the classification of small (≤2 cm) pulmonary nodules on CT imaging: A preliminary study. Acad. Radiol., 2020, 27(4): e55-e63. DOI: 10.1016/j.acra.2019.05.018.
|
[39] |
Koo H J, Lim S, Choe J, Choi S H, Sung H, Do K H. Radiographic and CT features of viral pneumonia. RadioGraphics, 2018, 38(3): 719-739. DOI: 10.1148/rg.2018170048.
|
[1] | Lei Guan, Dong-Sheng Li, Ji-Ye Liang, Wen-Jian Wang, Ke-Shi Ge, Xi-Cheng Lu. Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview[J]. Journal of Computer Science and Technology, 2024, 39(3): 567-584. DOI: 10.1007/s11390-024-3872-3 |
[2] | Adam Weingram, Yuke Li, Hao Qi, Darren Ng, Liuyao Dai, Xiaoyi Lu. xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning[J]. Journal of Computer Science and Technology, 2023, 38(1): 166-195. DOI: 10.1007/s11390-023-2894-6 |
[3] | Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. A Survey of Text Summarization Approaches Based on Deep Learning[J]. Journal of Computer Science and Technology, 2021, 36(3): 633-663. DOI: 10.1007/s11390-020-0207-x |
[4] | Hua Chen, Juan Liu, Qing-Man Wen, Zhi-Qun Zuo, Jia-Sheng Liu, Jing Feng, Bao-Chuan Pang, Di Xiao. CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology[J]. Journal of Computer Science and Technology, 2021, 36(2): 347-360. DOI: 10.1007/s11390-021-0849-3 |
[5] | Jun Gao, Paul Liu, Guang-Di Liu, Le Zhang. Robust Needle Localization and Enhancement Algorithm for Ultrasound by Deep Learning and Beam Steering Methods[J]. Journal of Computer Science and Technology, 2021, 36(2): 334-346. DOI: 10.1007/s11390-021-0861-7 |
[6] | Wei Du, Yu Sun, Hui-Min Bao, Liang Chen, Ying Li, Yan-Chun Liang. DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning[J]. Journal of Computer Science and Technology, 2021, 36(2): 234-247. DOI: 10.1007/s11390-021-0851-9 |
[7] | Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults[J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146. DOI: 10.1007/s11390-020-9665-4 |
[8] | Nuo Qun, Hang Yan, Xi-Peng Qiu, Xuan-Jing Huang. Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node[J]. Journal of Computer Science and Technology, 2020, 35(5): 1115-1126. DOI: 10.1007/s11390-020-9576-4 |
[9] | Hui-Ying Lan, Lin-Yang Wu, Xiao Zhang, Jin-Hua Tao, Xun-Yu Chen, Bing-Rui Wang, Yu-Qing Wang, Qi Guo, Yun-Ji Chen. DLPlib: A Library for Deep Learning Processor[J]. Journal of Computer Science and Technology, 2017, 32(2): 286-296. DOI: 10.1007/s11390-017-1722-2 |
[10] | Ma Zhifang. DKBLM——Deep Knowledge Based Learning Methodology[J]. Journal of Computer Science and Technology, 1993, 8(4): 93-98. |
1. | Jerald Prasath G, Prabu S, V. Valli Mayil, et al. Optimized double transformer residual super-resolution network-based X-ray images for classification of pneumonia identification. Knowledge-Based Systems, 2025, 311: 113037. DOI:10.1016/j.knosys.2025.113037 |
2. | K. Balasamy, V. Seethalakshmi. HCO-RLF: Hybrid classification optimization using recurrent learning and fuzzy for COVID-19 detection on CT images. Biomedical Signal Processing and Control, 2025, 100: 106951. DOI:10.1016/j.bspc.2024.106951 |
3. | Ali Khalili Fakhrabadi, Mehdi Jafari Shahbazzadeh, Nazanin Jalali, et al. A hybrid inception-dilated-ResNet architecture for deep learning-based prediction of COVID-19 severity. Scientific Reports, 2025, 15(1) DOI:10.1038/s41598-025-91322-3 |
4. | Burhan Ul Haque Sheikh, Aasim Zafar. White-box inference attack: compromising the security of deep learning-based COVID-19 diagnosis systems. International Journal of Information Technology, 2024, 16(3): 1475. DOI:10.1007/s41870-023-01538-7 |
5. | S. Maheswari, S. Suresh, S. Ahamed Ali. A systematic literature review on machine learning and deep learning-based covid-19 detection frameworks using X-ray Images. Applied Soft Computing, 2024, 166: 112137. DOI:10.1016/j.asoc.2024.112137 |
6. | Goizalde Badiola-Zabala, Jose Manuel Lopez-Guede, Julian Estevez, et al. Machine Learning First Response to COVID-19: A Systematic Literature Review of Clinical Decision Assistance Approaches during Pandemic Years from 2020 to 2022. Electronics, 2024, 13(6): 1005. DOI:10.3390/electronics13061005 |
7. | Cheng-Tang Pan, Rahul Kumar, Zhi-Hong Wen, et al. Improving Respiratory Infection Diagnosis with Deep Learning and Combinatorial Fusion: A Two-Stage Approach Using Chest X-ray Imaging. Diagnostics, 2024, 14(5): 500. DOI:10.3390/diagnostics14050500 |
8. | G. Sripriyanka, Anand Mahendran. Securing IoMT: A Hybrid Model for DDoS Attack Detection and COVID-19 Classification. IEEE Access, 2024, 12: 17328. DOI:10.1109/ACCESS.2024.3354034 |
9. | Fanfeng Shi, Jiaji Wang, Vishnuvarthanan Govindaraj. SGS: SqueezeNet-guided Gaussian-kernel SVM for COVID-19 Diagnosis. Mobile Networks and Applications, 2024. DOI:10.1007/s11036-023-02288-3 |
10. | Sheena Christabel Pravin, G. Rohith, Kiruthika V, et al. PixNet for early diagnosis of COVID-19 using CT images. Multimedia Tools and Applications, 2024. DOI:10.1007/s11042-024-19221-9 |
11. | Shui-Hua Wang, Suresh Chandra Satapathy, Man-Xia Xie, et al. RETRACTED ARTICLE: ELUCNN for explainable COVID-19 diagnosis. Soft Computing, 2024, 28(S2): 455. DOI:10.1007/s00500-023-07813-w |
12. | Junwen Chen, Tong Liu, Yangguang Cui, et al. A meta-learning based method for few-shot pneumonia identification using chest X-ray images. Biomedical Signal Processing and Control, 2024, 95: 106433. DOI:10.1016/j.bspc.2024.106433 |
13. | G Divya Deepak. Optimization of deep neural network for multiclassification of Pneumonia. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2024, 12(1) DOI:10.1080/21681163.2023.2292072 |
14. | Ali Akbar Siddique, Wadii Boulila, Mohammed S. Alshehri, et al. Privacy-Enhanced Pneumonia Diagnosis: IoT-Enabled Federated Multi-Party Computation in Industry 5.0. IEEE Transactions on Consumer Electronics, 2024, 70(1): 1923. DOI:10.1109/TCE.2023.3319565 |
15. | Muhammad Umair Ali, Amad Zafar, Jawad Tanveer, et al. Deep learning network selection and optimized information fusion for enhanced COVID‐19 detection. International Journal of Imaging Systems and Technology, 2024, 34(2) DOI:10.1002/ima.23001 |
16. | Burhan Ul Haque Sheikh, Aasim Zafar. Removing Adversarial Noise in X-ray Images via Total Variation Minimization and Patch-Based Regularization for Robust Deep Learning-based Diagnosis. Journal of Imaging Informatics in Medicine, 2024, 37(6): 3282. DOI:10.1007/s10278-023-00919-5 |
17. | Yu-Dong Zhang, Yanrong Pei, Juan Manuel Górriz. SCNN: A Explainable Swish-based CNN and Mobile App for COVID-19 Diagnosis. Mobile Networks and Applications, 2023, 28(5): 1936. DOI:10.1007/s11036-023-02161-3 |
18. | WEI WANG, YANRONG PEI, SHUI-HUA WANG, et al. PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN. BIOCELL, 2023, 47(2): 373. DOI:10.32604/biocell.2023.025905 |
19. | Omneya Attallah. RADIC:A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics. Chemometrics and Intelligent Laboratory Systems, 2023, 233: 104750. DOI:10.1016/j.chemolab.2022.104750 |
20. | Mana Saleh Al Reshan, Kanwarpartap Singh Gill, Vatsala Anand, et al. Detection of Pneumonia from Chest X-ray Images Utilizing MobileNet Model. Healthcare, 2023, 11(11): 1561. DOI:10.3390/healthcare11111561 |
21. | Wanchun Sun, Xin Feng, Jingyao Liu, et al. Weakly supervised segmentation of COVID-19 infection with local lesion coherence on CT images. Biomedical Signal Processing and Control, 2023, 79: 104099. DOI:10.1016/j.bspc.2022.104099 |
22. | Shiyue Huang, Ziwei Wang, Xinyi Zhang, et al. DBPA: A Benchmark for Transactional Database Performance Anomalies. Proceedings of the ACM on Management of Data, 2023, 1(1): 1. DOI:10.1145/3588926 |
23. | Varshini S, Ramprasad R, Sivakumar M. Pneumonia Detection Using Image Enhancing Techniques and Deep Learning. international journal of engineering technology and management sciences, 2023, 7(2): 762. DOI:10.46647/ijetms.2023.v07i02.082 |
24. | Xingze Wang, Guoxian Yu, Zhongmin Yan, et al. Lung Cancer Subtype Diagnosis by Fusing Image-Genomics Data and Hybrid Deep Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20(1): 512. DOI:10.1109/TCBB.2021.3132292 |
25. | Haoyang Zhou, Haojiang Li, Shuchao Chen, et al. BSMM-Net: Multi-modal neural network based on bilateral symmetry for nasopharyngeal carcinoma segmentation. Frontiers in Human Neuroscience, 2023, 16 DOI:10.3389/fnhum.2022.1068713 |
26. | Jingzhang Sun, Bang-Hung Yang, Chien-Ying Li, et al. Fast myocardial perfusion SPECT denoising using an attention-guided generative adversarial network. Frontiers in Medicine, 2023, 10 DOI:10.3389/fmed.2023.1083413 |
27. | Bedanta Bhattacharjee, Abu Md Ashif Ikbal, Atika Farooqui, et al. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. Chemical Papers, 2023, 77(8): 4107. DOI:10.1007/s11696-023-02795-3 |
28. | Hai-yan Yao, Wang-gen Wan, Xiang Li. A deep adversarial model for segmentation-assisted COVID-19 diagnosis using CT images. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1) DOI:10.1186/s13634-022-00842-x |
29. | Jiawei Mao, Xuesong Yin, Guodao Zhang, et al. Pseudo-labeling generative adversarial networks for medical image classification. Computers in Biology and Medicine, 2022, 147: 105729. DOI:10.1016/j.compbiomed.2022.105729 |
30. | Xue Han, Zuojin Hu, Shuihua Wang, et al. A Survey on Deep Learning in COVID-19 Diagnosis. Journal of Imaging, 2022, 9(1): 1. DOI:10.3390/jimaging9010001 |
31. | Yanyan Mao, Chao Chen, Zhenjie Wang, et al. Generative adversarial networks with adaptive normalization for synthesizing T2-weighted magnetic resonance images from diffusion-weighted images. Frontiers in Neuroscience, 2022, 16 DOI:10.3389/fnins.2022.1058487 |
32. | Yi-Zhong Wang, David G. Birch. Performance of Deep Learning Models in Automatic Measurement of Ellipsoid Zone Area on Baseline Optical Coherence Tomography (OCT) Images From the Rate of Progression of USH2A-Related Retinal Degeneration (RUSH2A) Study. Frontiers in Medicine, 2022, 9 DOI:10.3389/fmed.2022.932498 |
33. | Jiaji Wang. A Review of Deep Learning-Based Methods for the Diagnosis and Prediction of COVID-19. International Journal of Patient-Centered Healthcare, 2022, 12(1): 1. DOI:10.4018/IJPCH.311444 |
34. | Yeong-Hun Song, Jun-Young Yi, Young Noh, et al. On the reliability of deep learning-based classification for Alzheimer’s disease: Multi-cohorts, multi-vendors, multi-protocols, and head-to-head validation. Frontiers in Neuroscience, 2022, 16 DOI:10.3389/fnins.2022.851871 |
35. | Xixiang Lin, Feifei Yang, Yixin Chen, et al. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction. Frontiers in Cardiovascular Medicine, 2022, 9 DOI:10.3389/fcvm.2022.903660 |
36. | Zhe Li, Dehua Hu. Forecast of the COVID-19 Epidemic Based on RF-BOA-LightGBM. Healthcare, 2021, 9(9): 1172. DOI:10.3390/healthcare9091172 |
37. | Yunqing Liu, Yanrui Jin, Jinlei Liu, et al. Precise and efficient heartbeat classification using a novel lightweight-modified method. Biomedical Signal Processing and Control, 2021, 68: 102771. DOI:10.1016/j.bspc.2021.102771 |
38. | Payman Hussein Hussan, Israa Hadi Ali. A comprehensive survey on Covid-19 disease diagnosis: Datasets, deep learning approaches and challenges. TRANSPORT, ECOLOGY, SUSTAINABLE DEVELOPMENT: EKO VARNA 2023, DOI:10.1063/5.0191721 |
39. | Jia-Ji Wang, Yangrong Pei, Liam O’Donnell, et al. Multimedia Technology and Enhanced Learning. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, DOI:10.1007/978-3-031-18123-8_50 |
40. | Xiaoyu Tang, HuiLong Chen, Hui Ye, et al. 7th International Conference on Computing, Control and Industrial Engineering (CCIE 2023). Lecture Notes in Electrical Engineering, DOI:10.1007/978-981-99-2730-2_39 |
41. | Guangling Qi, Linna Zhao, Yuanhang Di. Multi-view Information Fusion Network for Pneumonia Diagnosis from Full Sequence CTs. 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), DOI:10.1109/ICIBA56860.2023.10164992 |
42. | Jia-Ji Wang. Intelligent Computing Theories and Application. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-13829-4_52 |
43. | Shagun Sharma, Kalpna Guleria. Pneumonia Detection from Chest X-ray Images using Transfer Learning. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), DOI:10.1109/ICRITO56286.2022.9964588 |
44. | Jiaji Wang, Shuwen Chen, Huisheng Zhu. Computational and Experimental Simulations in Engineering. Mechanisms and Machine Science, DOI:10.1007/978-3-031-44947-5_20 |
45. | Md Rabiul Hasan, Shah Muhammad Azmat Ullah, Mehedi Hasan. Deep Learning in Radiology:A Transfer-Learning Based Approach for the Identification and Classification of COVID-19 and Pneumonia in Chest X-ray Images. 2023 Fourth International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), DOI:10.1109/ICSTCEE60504.2023.10585226 |