We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Meng-Xin Chen, Xiao-Dong Zhu, Hao Zhang, Zhen Liu, Yuan-Ning Liu. SMRI: A New Method for siRNA Design for COVID-19 Therapy[J]. Journal of Computer Science and Technology, 2022, 37(4): 991-1002. DOI: 10.1007/s11390-021-0826-x
Citation: Meng-Xin Chen, Xiao-Dong Zhu, Hao Zhang, Zhen Liu, Yuan-Ning Liu. SMRI: A New Method for siRNA Design for COVID-19 Therapy[J]. Journal of Computer Science and Technology, 2022, 37(4): 991-1002. DOI: 10.1007/s11390-021-0826-x

SMRI: A New Method for siRNA Design for COVID-19 Therapy

Funds: The work was supported by Jilin Provincial Key Laboratory of New Biometrics Technology, the National Natural Science Foundation of China under Grant No. 61471181, and the Jilin Province Industrial Innovation Special Fund Project of China under Grant Nos. 2019C053-2 and 2019C053-6.
More Information
  • Author Bio:

    Yuan-Ning Liu received his B.S. degree, M.S. degree in computer application and Ph.D. degree in communication information system from Jilin University, Changchun. He is currently a professor of computer science of Jilin University, Changchun. His current research interests are software engineering, RNA interference, pattern recognition, and bioinformatics.

  • Corresponding author:

    Yuan-Ning Liu E-mail: liuyn@jlu.edu.cn

  • Received Date: July 22, 2020
  • Revised Date: August 23, 2021
  • Accepted Date: August 30, 2021
  • Published Date: July 24, 2022
  • First discovered in Wuhan, China, SARS-CoV-2 is a highly pathogenic novel coronavirus, which rapidly spreads globally and becomes a pandemic with no vaccine and limited distinctive clinical drugs available till March 13th, 2020. Ribonucleic Acid interference (RNAi) technology, a gene-silencing technology that targets mRNA, can cause damage to RNA viruses effectively. Here, we report a new efficient small interfering RNA (siRNA) design method named Simple Multiple Rules Intelligent Method (SMRI) to propose a new solution of the treatment of COVID-19. To be specific, this study proposes a new model named Base Preference and Thermodynamic Characteristic model (BPTC model) indicating the siRNA silencing efficiency and a new index named siRNA Extended Rules index (SER index) based on the BPTC model to screen high-efficiency siRNAs and filter out the siRNAs that are difficult to take effect or synthesize as a part of the SMRI method, which is more robust and efficient than the traditional statistical indicators under the same circumstances. Besides, to silence the spike protein of SARS-CoV-2 to invade cells, this study further puts forward the SMRI method to search candidate high-efficiency siRNAs on SARS-CoV-2's S gene. This study is one of the early studies applying RNAi therapy to the COVID-19 treatment. According to the analysis, the average value of predicted interference efficiency of the candidate siRNAs designed by the SMRI method is comparable to that of the mainstream siRNA design algorithms. Moreover, the SMRI method ensures that the designed siRNAs have more than three base mismatches with human genes, thus avoiding silencing normal human genes. This is not considered by other mainstream methods, thereby the five candidate high-efficiency siRNAs which are easy to take effect or synthesize and much safer for human body are obtained by our SMRI method, which provide a new safer, small dosage and long efficacy solution for the treatment of COVID-19.
  • [1]
    Saif L J, Wang Q, Vlasova A N et al. Coronaviruses. In Diseases of Swine (11th edition), Zimmerman J J, Karriker L A, Ramirez A, Schwartz K J, Stevenson G W, Zhang J Q (eds.), 2019, pp.488-523. DOI: 10.1002/9781119350927.ch31.
    [2]
    Cui J, Li F, Shi Z L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 2018, 17(3): 181-192. DOI: 10.1038/s41579-018-0118-9.
    [3]
    Li F. Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 2016, 3(1): 237-261. DOI: 10.1146/annurev-virology-110615-042301.
    [4]
    Richman D D, Whitley R J, Hayden F G. Clinical Virology (3rd edition). ASM Press, 2009.
    [5]
    Drosten C, Günther S, Preiser W et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine, 2003, 348: 1967-1976. DOI: 10.1056/NEJMoa030747.
    [6]
    Yin Y, Wunderink R G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology, 2017, 23(2): 130-137. DOI: 10.1111/resp.13196.
    [7]
    Shereen M A, Khan S, Kazmi A et al. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 2020, 24: 91-98. DOI: 10.1016/j.jare.2020.03.005.
    [8]
    Zhu N, Zhang D, Wang W et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 2020, 382(8): 727-733. DOI: 10.1056/NEJMoa2001017.
    [9]
    Wang C, Horby P W, Hayden F G et al. A novel coronavirus outbreak of global health concern. The Lancet, 2020, 395(10223): 470-473. DOI: 10.1016/S0140-6736(20)30185-9.
    [10]
    Chen N, Zhou M, Dong X et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 2020, 395(10223): 507-513. DOI: 10.1016/S0140-6736(20)30211-7.
    [11]
    Lindbo J A, Silva-Rosales L, Proebsting W M et al. Induction of a highly specific antiviral state in transgenic plants: Implications for regulation of gene and virus resistance. The Plant Cell, 1993, 5(12): 1749-1759. DOI: 10.1105/tpc.5.12.1749.
    [12]
    Vance V, Vaucheret H. RNA silencing in plants—Defense and counterdefense. Science, 2001, 292(5525): 2277-2280. DOI: 10.1126/science.1061334.
    [13]
    Montgomery M K, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26): 15502-15507. DOI: 10.1073/pnas.95.26.15502.
    [14]
    Voinnet O, Pinto Y M, Baulcombe D C. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 14147-14152. DOI: 10.1073/pnas.96.24.14147.
    [15]
    Nishikura K. A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell, 2001, 107(4): 415-418. DOI: 10.1016/S0092-8674(01)00581-5.
    [16]
    Tijsterman M, Ketting R F, Plasterk R H A. The genetics of RNA silencing. Annual Review of Genetics, 2002, 36(1): 489-519. DOI: 10.1146/annurev.genet.36.043002.091619.
    [17]
    Lippman Z, Martienssen R. The role of RNA interference in heterochromatic silencing. Nature, 2004, 431(7006): 364-370. DOI: 10.1038/nature02875.
    [18]
    Siomi H, Mikiko C, Siomi M C. On the road to reading the RNA-interference code. Nature, 2009, 457(7228): 396-404. DOI: 10.1038/nature07754.
    [19]
    McManus M T, Sharp P A. Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics, 2002, 3(10): 737-747. DOI: 10.1038/nrg908.
    [20]
    Thomas M, Greil J, Heidenreich O. Targeting leukemic fusion proteins with small interfering RNAs: Recent advances and therapeutic potentials 1. Acta Pharmacologica Sinica, 2006, 27(3): 273-281. DOI: 10.1111/j.1745-7254.2006.00282.x.
    [21]
    Ichim T E, Li M, Qian H et al. RNA interference: A potent tool for gene-specific therapeutics. American Journal of Transplantation, 2004, 4(8): 1227-1236. DOI: 10.1111/j.1600-6143.2004.00530.x.
    [22]
    Qureshi A, Tantray V G, Kirmani A R et al. A review on current status of antiviral siRNA. Reviews in Medical Virology, 2018, 28(4): Article No. e1976. DOI: 10.1002/rmv.1976.
    [23]
    Shi Y, Yang D H, Xiong J et al. Inhibition of genes of SARS coronavirus by synthetic small interfering RNAs. Cell Research, 2005, 15(3): 193-200. DOI: 10.1038/sj.cr.7290286.
    [24]
    Barouch-Bentov R, Einav S. Turning up your nose for a flaviviral encephalitis cure. Cell Host & Microbe, 2018, 23(4): 427-429. DOI: 10.1016/j.chom.2018.03.014.
    [25]
    Wu C J, Chan Y L. Antiviral applications of RNAi for coronavirus. Expert Opinion on Investigational Drugs, 2006, 15(2): 89-97. DOI: 10.1517/13543784.15.2.89.
    [26]
    Thakur N, Qureshi A, Kumar M. VIRsiRNAdb: A curated database of experimentally validated viral siRNA/shRNA. Nucleic Acids Research, 2012, 40(D1): D230-D236. DOI: 10.1093/nar/gkr1147.
    [27]
    Elbashir S, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, 26(2): 199-213. DOI: 10.1016/S1046-2023(02)00023-3.
    [28]
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall W S, Khvorova A. Rational siRNA design for RNA interference. Nat. Biotechnol., 2004, 22(3): 326-330. DOI: 10.1038/nbt936.
    [29]
    Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun., 2004, 316(4): 1050-1058. DOI: 10.1016/j.bbrc.2004.02.157.
    [30]
    Hsieh A C, Bo R, Manola J, Vazquez F, Bare O, Khvorova A, Scaringe S, Sellers W R. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: Determinants of gene silencing for use in cell-based screens. Nucleic Acids Res, 2004, 32(3): 893-901. DOI: 10.1093/nar/gkh238.
    [31]
    Takasaki S, Kotani S, Konagaya A. An effective method for selecting siRNA target sequences in mammalian cells. Cell Cycle, 2004, 3(6): 790-5. DOI: 10.4161/cc.3.6.892.
    [32]
    Katoh T, Suzuki T. Specific residues at every third position of siRNA shape its efficient RNAi activity. Nucleic Acids Res., 2007, 35(4): Article No. e27. DOI: 10.1093/nar/gkl1120.
    [33]
    Vert J P, Foveau N, Lajaunie C et al. An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics, 2006, 7(1): Article No. 520. DOI: 10.1186/1471-2105-7-520.
    [34]
    Ichihara M, Murakumo Y, Masuda A et al. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Research, 2007, 35(18): Article No. e123. DOI: 10.1093/nar/gkm699.
    [35]
    Qureshi A, Thakur N, Kumar M. VIRsiRNApred: A web server for predicting inhibition efficacy of siRNAs targeting human viruses. Journal of Translational Medicine, 2013, 11: Article No. 305. DOI: 10.1186/1479-5876-11-305.
    [36]
    Pei Y, Tuschl T. On the art of identifying effective and specific siRNAs. Nature Methods, 2006, 3(9): 670-676. DOI: 10.1038/nmeth911.
    [37]
    Geley S, Müller C. RNAi: Ancient mechanism with a promising future. Experimental Gerontology, 2004, 39(7): 985-998. DOI: 10.1016/j.exger.2004.03.040.
    [38]
    Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002, 110(5): 563-574. DOI: 10.1016/s0092-8674(02)00908-x.
    [39]
    Novina C D, Sharp P A. The RNAi revolution. Nature, 2004, 430(6996): 161-164. DOI: 10.1038/430161a.
    [40]
    Schubert S, Grünweller A, Erdmann V A et al. Local RNA target structure influences siRNA efficacy: Systematic analysis of intentionally designed binding regions. Journal of Molecular Biology, 2005, 348(4): 883-893. DOI: 10.1016/j.jmb.2005.03.011.
    [41]
    Preall J B, Sontheimer E J. RNAi: RISC gets loaded. Cell, 2005, 123(4): 543-545. DOI: 10.1016/j.cell.2005.11.006.
    [42]
    Holen T, Amarzguioui M, Wiiger M T, Babaie E, Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res., 2002, 30(8): 1757-1766. DOI: 10.1093/nar/30.8.1757.
    [43]
    Yiu S M, Wong P W H, Lam T W et al. Filtering of ineffective siRNAs and improved siRNA design tool. Bioinformatics, 2005, 21(2): 144-151. DOI: 10.1093/bioinformatics/bth498.
    [44]
    Zhao W M, Song S H, Chen M L et al. The 2019 novel coronavirus resource. Hereditas (Beijing), 2020, 42(2): 212-221. DOI: 10.16288/j.yczz.20-030. (in Chinese)
    [45]
    Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2): 271-280. DOI: 10.1016/j.cell.2020.02.052.
    [46]
    Li W, Moore M J, Vasilieva N et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450-454. DOI: 10.1038/nature02145.
    [47]
    Matveeva O, Nechipurenko Y, Rossi L, Moore B, Saetrom P, Ogurtsov A Y, Atkins J F, Shabalina S A. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res., 2007, 35: Article No. e63. DOI: 10.1093/nar/gkm088.
    [48]
    Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F. siRNA selection server: An automated siRNA oligonucleotide prediction server. Nucleic Acids Res., 2004, 32(suppl_2): W130-W134. DOI: 10.1093/nar/gkh366.
  • Related Articles

    [1]Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture[J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. DOI: 10.1007/s11390-020-0679-8
    [2]Inès Mouakher, Fatma Dhaou, J. Christian Attiogbé. Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams for Formal Verification[J]. Journal of Computer Science and Technology, 2022, 37(1): 4-28. DOI: 10.1007/s11390-021-1673-5
    [3]Wen-Yan Chen, Ke-Jiang Ye, Cheng-Zhi Lu, Dong-Dai Zhou, Cheng-Zhong Xu. Interference Analysis of Co-Located Container Workloads: A Perspective from Hardware Performance Counters[J]. Journal of Computer Science and Technology, 2020, 35(2): 412-417. DOI: 10.1007/s11390-020-9707-y
    [4]Yu-Tong Lu, Peng Cheng, Zhi-Guang Chen. Design and Implementation of the Tianhe-2 Data Storage and Management System[J]. Journal of Computer Science and Technology, 2020, 35(1): 27-46. DOI: 10.1007/s11390-020-9799-4
    [5]Hong-Cheng Huang, Jie Zhang, Zu-Fan Zhang, Zhong-Yang Xiong. Interference-Limited Device-to-Device Multi-User Cooperation Scheme for Optimization of Edge Networking[J]. Journal of Computer Science and Technology, 2016, 31(6): 1096-1109. DOI: 10.1007/s11390-016-1685-8
    [6]Xiao-Yong Fang, Zhi-Gang Luo, Zheng-Hua Wang. Predicting RNA Secondary Structure Using Profile Stochastic Context-Free Grammars and Phylogenic Analysis[J]. Journal of Computer Science and Technology, 2008, 23(4): 582-589.
    [7]Ying-Lei Song, Ji-Zhen Zhao, Chun-Mei Liu, Kan Liu, Russell Malmberg, Li-Ming Cai. RNA Structural Homology Search with a Succinct Stochastic Grammar Model[J]. Journal of Computer Science and Technology, 2005, 20(4): 454-464.
    [8]Ma Jun, Ma Shaohan. An O(k~2n~2) Algorithm to Find a k-Partition in a k-Connected Graph[J]. Journal of Computer Science and Technology, 1994, 9(1): 86-91.
    [9]Zhao Ming. 2-D EAG Method for the Recognition of Hand-Printed Chinese Characters[J]. Journal of Computer Science and Technology, 1990, 5(4): 319-328.
    [10]Li Wei. A Structural Operational Semantics for an Edison Like Language(2)[J]. Journal of Computer Science and Technology, 1986, 1(2): 42-53.
  • Others

Catalog

    Article views (109) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return