SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Jia-Qing Dong, Ze-Hao He, Yuan-Yuan Gong, Pei-Wen Yu, Chen Tian, Wan-Chun Dou, Gui-Hai Chen, Nai Xia, Hao-Ran Guan. SMART: Speedup Job Completion Time by Scheduling Reduce Tasks[J]. Journal of Computer Science and Technology, 2022, 37(4): 763-778. DOI: 10.1007/s11390-022-2118-5 |
[1] |
Grandl R, Kandula S, Rao S, Akella A, Kulkarni J. Graphene: Packing and dependency-aware scheduling for data-parallel clusters. In Proc. the 12th USENIX Conference on Operating Systems Design and Implementation, Nov. 2016, pp.81-97.
|
[2] |
Chang H, Kodialam M, Kompella R R, Lakshman T V, Lee M, Mukherjee S. Scheduling in MapReduce-like systems for fast completion time. In Proc. the 30th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, Apr. 2011, pp.3074-3082. DOI: 10.1109/INFCOM.2011.5935152.
|
[3] |
Peng Y, Chen K, Wang G, Bai W, Zhao Y, Wang H, Geng Y, Ma Z, Gu L. Towards comprehensive traffic forecasting in cloud computing: Design and application. IEEE/ACM Transactions on Networking, 2016, 24(4): 2210-2222. DOI: 10.1109/TNET.2015.2458892.
|
[4] |
Ullah I, Khan M S, Amir M, Kim J, Kim S M. LSTPD: Least slack time-based preemptive deadline constraint scheduler for Hadoop clusters. IEEE Access, 2020, 8: 111751-111762. DOI: 10.1109/ACCESS.2020.3002565.
|
[5] |
Gao Y, Zhou Y, Zhou B, Shi L, Zhang J. Handling data skew in MapReduce cluster by using partition tuning. Journal of Healthcare Engineering, 2017, 2017: Article No. 1425102. DOI: 10.1155/2017/1425102.
|
[6] |
Hammoud M, Sakr M F. Locality-aware reduce task scheduling for MapReduce. In Proc. the 3rd IEEE International Conference on Cloud Computing Technology and Science, Nov. 29-Dec. 1, 2011, pp.570-576. DOI: 10.1109/CloudCom.2011.87.
|
[7] |
Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Commun. ACM, 2008, 51(1): 107-113. DOI: 10.1145/1327452.1327492.
|
[8] |
Ahmad F, Lee S, Thottethodi M, Vijaykumar T. PUMA: Purdue MapReduce benchmarks suite. Technical Report, Purdue University, 2012. https://engineering.purdue.edu/∼puma/puma.pdf, May 2022.
|
[9] |
Graham R L. Bounds for certain multiprocessing anomalies. The Bell System Technical Journal, 1966, 45(9): 1563-1581. DOI: 10.1002/j.1538-7305.1966.tb01709.x.
|
[10] |
Mosharaf C, Ion S. Coflow: A networking abstraction for cluster applications. In Proc. the 11th ACM Workshop on Hot Topics in Networks, Oct. 2012, pp.31-36. DOI: 10.1145/2390231.2390237.
|
[11] |
Kwon Y, Balazinska M, Howe B, Rolia J. SkewTune: Mitigating skew in MapReduce applications. In Proc. the 2012 ACM SIGMOD International Conference on Management of Data, May 2012, pp.25-36. DOI: 10.1145/2213836.2213840.
|
[12] |
Chowdhury M, Zhong Y, Stoica I. Efficient coflow scheduling with Varys. ACM SIGCOMM Comput. Commun. Rev., 2014, 44(4): 443-454. DOI: 10.1145/2740070.2626315.
|
[13] |
Chowdhury M, Stoica I. Efficient coflow scheduling without prior knowledge. In Proc. the 2015 ACM Conference on Special Interest Group on Data Communication, Aug. 2015, pp.393-406. DOI: 10.1145/2785956.2787480.
|
[14] |
Mao H, Schwarzkopf M, Venkatakrishnan S B, Meng Z, Alizadeh M. Learning scheduling algorithms for data processing clusters. In Proc. the ACM Special Interest Group on Data Communication, Aug. 2019, pp.270-288. DOI: 10.1145/3341302.3342080.
|
[15] |
Nguyen K, Wang K, Bu Y, Fang L, Hu J, Xu G. FACADE: A compiler and runtime for (almost) object-bounded big data applications. In Proc. the 20th International Conference on Architectural Support for Programming Languages and Operating Systems, Mar. 2015, pp.675-690. DOI: 10.1145/2694344.2694345.
|
[16] |
Nguyen K, Fang L, Xu G, Demsky B, Lu S, Alamian S, Mutlu O. Yak: A high-performance big-data-friendly garbage collector. In Proc. the 12th USENIX Symposium on Operating Systems Design and Implementation, November 2016, pp.349-365.
|
[17] |
Rasmussen A, Lam V T, Conley M, Porter G, Kapoor R, Vahdat A. Themis: An I/O-efficient MapReduce. In Proc. the 3rd ACM Symposium on Cloud Computing, Oct. 2012, Article No. 13. DOI: 10.1145/2391229.2391242.
|
[18] |
Rao S, Ramakrishnan R, Silberstein A, Ovsiannikov M, Reeves D. Sailfish: A framework for large scale data processing. In Proc. the 3rd ACM Symposium on Cloud Computing, Oct. 2012, Article No. 4. DOI: 10.1145/2391229.2391233.
|
[19] |
Zhang H, Cho B, Seyfe E, Ching A, Freedman M J. Riffle: Optimized shuffle service for large-scale data analytics. In Proc. the 13th EuroSys Conference, Apr. 2018, Article No. 43. DOI: 10.1145/3190508.3190534.
|
[20] |
Zaharia M, Borthakur D, Sarma S J, Elmeleegy K, Shenker S, Stoica I. Delay scheduling: A simple technique for achieving locality and fairness in cluster scheduling. In Proc. the 5th European Conference on Computer Systems, Apr. 2010, pp.265-278. DOI: 10.1145/1755913.1755940.
|
[21] |
Ibrahim S, Jin H, Lu L, He B, Antoniu G, Wu S. Maestro: Replica-aware map scheduling for MapReduce. In Proc. the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2012, pp.435-442. DOI: 10.1109/CCGrid.2012.122.
|
[22] |
Tang Z, Jiang L, Zhou J, Li K, Li K. A self-adaptive scheduling algorithm for reduce start time. Future Generation Computer Systems, 2015, 43/44: 51-60. DOI: 10.1016/j.future.2014.08.011.
|
[23] |
Ibrahim S, Jin H, Lu L, Wu S, He B, Qi L. LEEN: Locality/fairness-aware key partitioning for MapReduce in the cloud. In Proc. the 2nd IEEE International Conference on Cloud Computing Technology and Science, Nov. 30-Dec. 3, 2010, pp.17-24. DOI: 10.1109/CloudCom.2010.25.
|
[24] |
Tan J, Meng X, Zhang L. Coupling task progress for MapReduce resource-aware scheduling. In Proc. the 2013 IEEE INFOCOM, Apr. 2013, pp.1618-1626. DOI: 10.1109/INFCOM.2013.6566958.
|
[1] | Chong Zhang, Zi-Tong Su, Min Li, Hui-Yuan Li, Wen-Jing Ma, Lei-Sheng Li. Optimization of Generalized Eigensolver for Dense Symmetric Matrices on AMD GPU[J]. Journal of Computer Science and Technology, 2025, 40(3): 855-869. DOI: 10.1007/s11390-024-3673-8 |
[2] | Jason Liu, Pedro Espina, Xian-He Sun. A Study on Modeling and Optimization of Memory Systems[J]. Journal of Computer Science and Technology, 2021, 36(1): 71-89. DOI: 10.1007/s11390-021-0771-8 |
[3] | Lan Huang, Da-Lin Li, Kang-Ping Wang, Teng Gao, Adriano Tavares. A Survey on Performance Optimization of High-Level Synthesis Tools[J]. Journal of Computer Science and Technology, 2020, 35(3): 697-720. DOI: 10.1007/s11390-020-9414-8 |
[4] | Yun-Cong Zhang, Xiao-Yang Wang, Cong Wang, Yao Xu, Jian-Wei Zhang, Xiao-Dong Lin, Guang-Yu Sun, Gong-Lin Zheng, Shan-Hui Yin, Xian-Jin Ye, Li Li, Zhan Song, Dong-Dong Miao. Bigflow: A General Optimization Layer for Distributed Computing Frameworks[J]. Journal of Computer Science and Technology, 2020, 35(2): 453-467. DOI: 10.1007/s11390-020-9702-3 |
[5] | Zheng-Hao Jin, Haiyang Shi, Ying-Xin Hu, Li Zha, Xiaoyi Lu. CirroData: Yet Another SQL-on-Hadoop Data Analytics Engine with High Performance[J]. Journal of Computer Science and Technology, 2020, 35(1): 194-208. DOI: 10.1007/s11390-020-9536-z |
[6] | Qi Chen, Kang Chen, Zuo-Ning Chen, Wei Xue, Xu Ji, Bin Yang. Lessons Learned from Optimizing the Sunway Storage System for Higher Application I/O Performance[J]. Journal of Computer Science and Technology, 2020, 35(1): 47-60. DOI: 10.1007/s11390-020-9798-5 |
[7] | Min Li, Chao Yang, Qiao Sun, Wen-Jing Ma, Wen-Long Cao, Yu-Long Ao. Enabling Highly Efficient k-Means Computations on the SW26010 Many-Core Processor of Sunway TaihuLight[J]. Journal of Computer Science and Technology, 2019, 34(1): 77-93. DOI: 10.1007/s11390-019-1900-5 |
[8] | Yu-Geng Song, Hui-Min Cui, Xiao-Bing Feng. Parallel Incremental Frequent Itemset Mining for Large Data[J]. Journal of Computer Science and Technology, 2017, 32(2): 368-385. DOI: 10.1007/s11390-017-1726-y |
[9] | Yu-Xiang Wang, Jun-Zhou Luo, Ai-Bo Song, Fang Dong. Partition-Based Online Aggregation with Shared Sampling in the Cloud[J]. Journal of Computer Science and Technology, 2013, 28(6): 989-1011. DOI: 10.1007/s11390-013-1393-6 |
[10] | Ying-Jie Shi, Xiao-Feng Meng, Fusheng Wang, Yan-Tao Gan. HEDC++:An Extended Histogram Estimator for Data in the Cloud[J]. Journal of Computer Science and Technology, 2013, 28(6): 973-988. DOI: 10.1007/s11390-013-1392-7 |
1. | Wanchun Dou, Xiaolong Xu, Shui Yu. Intelligent Industrial Internet Systems. DOI:10.1007/978-981-99-5732-3_2 |
2. | Qingyuan Hu, Tao Tao, Yu Liu, et al. Proceedings of the 5th International Conference on Big Data Analytics for Cyber-Physical System in Smart City—Volume 1. Lecture Notes on Data Engineering and Communications Technologies, DOI:10.1007/978-981-96-0208-7_6 |