SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Xu-Tao Du, Chun-Xiao Xing, Li-Zhu Zhou. Modeling and Verifying Concurrent Programs with Finite Chu Spaces[J]. Journal of Computer Science and Technology, 2010, 25(6): 1168-1183. DOI: 10.1007/s11390-010-1093-4 |
[1] |
Barr M. *-Autonomous categories. Lecture Notes in Mathematics, vol. 752, Springer-Verlag, 1979.
|
[2] |
Gupta V, Pratt V R. Gates accept concurrent behavior. In Proc. the 34th Annual Symposium on Foundations of Computer Science (FOCS 1993), Palo Alto, USA, Nov. 3-5, 1993, pp.62-71.
|
[3] |
Pratt V R. Time and information in sequential and concurrent computation. In Proc. the International Workshop on Theory and Practice of Parallel Programming (TPPP 1994), Sendai, Japan, Nov. 7-9, 1994, pp.1-24.
|
[4] |
Pratt V R. Chu Spaces and Their Interpretation as Concurrent Objects. Computer Science Today: Recent Trends and Developments, J van Leeuwen (ed.), Springer Berlin/Heidelberg, 1995, pp.392-405.
|
[5] |
Pratt V R. Rational mechanisms and natural mathematics. In Proc. the 6th International Joint Conference CAAP/FASE on Theory and Practice of Software Development (TAPSOFT 1995), Aarhus, Denmark, May 22-26, 1995, pp.108-122.
|
[6] |
Pratt V R. Chu spaces: Course notes for the school in category theory and applications. Coimbra, Portugal, July 1999, http://boole.stanford.edu/pub/coimbra.pdf.
|
[7] |
Vannucci S. Game formats as Chu spaces. International Game Theory Review (IGTR), 2007, 9(1): 119-138.
|
[8] |
Droste M, Zhang G Q. Bifinite Chu spaces. In Proc. the Second International Conference on Algebra and Coalgebra in Computer Science (CALCO 2007), Bergen, Norway, Aug. 20-24, 2007, pp.179-193.
|
[9] |
Huang F P, Droste M, Zhang G Q. A monoidal category of bifinite Chu spaces. Electron. Notes Theor. Comput. Sci., April 2008, 212: 285-297.
|
[10] |
Pratt V R. Chu spaces as a semantic bridge between linear logic and mathematics. Theor. Comput. Sci., 2003, 294(3): 439-471.
|
[11] |
Pratt V R. Event-state duality: The enriched case. In Proc. the 13th International Conference on Concurrency Theory (CONCUR 2002), Brno, Czech, Aug. 20-23, 2002, pp.41-56.
|
[12] |
Devarajan H, Hughes D J D, Plotkin G D, Pratt V R. Full completeness of the multiplicative linear logic of Chu spaces. In Proc. the 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), Trento, Italy, July 2-5, 1999, pp.234-242.
|
[13] |
Giuli E, Tholen W. A topologist's view of Chu spaces. Electron. Notes Theor. Comput. Sci., 15(5/6): 573-598.
|
[14] |
Chen X, Li Q, Deng Z. Formal topology, Chu space and approximable concept. In Proc. the International Workshop on Concept Lattices and Their Applications (CLA 2005), Olomouc, Czech, Sept. 7-9 2005, pp.158-165.
|
[15] |
Nguyen H T, Kreinovich V, Wu B. Chu spaces --- A new approach to diagnostic information fusion. In Proc. the 2nd International Conference on Information Fusion (FUSION 1999), Sunnyvale, USA, July 6-8, 1999, pp.323-330.
|
[16] |
Nguyen N, Nguyen H T, Wu B, Kreinovich V. Chu spaces: Towards new foundations for fuzzy logic and fuzzy control, with applications to information flow on the world wide web. JACIII, 2001, 5(3): 149-156.
|
[17] |
Kreinovich V, Liu G, Nguyen H. Chu spaces --- A new approach to describing uncertainty in systems. In Proc. the 42nd Midwest Symposium on Circuits and Systems, Las Cruces, USA, Aug. 8-11, 1999, pp.427-430.
|
[18] |
Chen X, Li Q, Deng Z. Chu space and approximable concept lattice in fuzzy setting. In Proc. the 2007 IEEE International Conference on Fuzzy Systems (ICFS 2007), London, UK, July 23-26, 2007, pp.1-6.
|
[19] |
Abramsky S. Big toy models: Representing physical systems as Chu spaces. OUCL, Tech. Rep. RR-09-08, Sept. 2009.
|
[20] |
Abramsky S. Coalgebras, Chu spaces, and representations of physical systems. OUCL, Tech. Rep. RR-09-11, Oct. 2009.
|
[21] |
Sato K, Horiuchi T, Hiraoka T, Kawakami H, Katai O. Decision making process via constraint-oriented fuzzy logic based on Chu space theory. In Proc. the Ninth IEEE International Conference on Fuzzy Systems (FUZZ 2000), San Antonio, USA, May 7-10, 2000, pp.222-227.
|
[22] |
Vinh J, Bowen P C. Semantics of RTL and validation of synthesized RTL designs using formal verification in reconfigurable computing systems. In Proc. the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS 2005), Greenbelt, USA, April 4-7, 2005, pp.247-254.
|
[23] |
Ivanov L. Modeling non-iterated system behavior with Chu spaces. In Proc. the 2008 International Conference on Computer Design (CDES 2008), Las Vegas, USA, July 14-17, 2008, pp.145-150.
|
[24] |
Pratt V R. Transition and cancellation in concurrency and branching time. Math. Structures in Comp. Sci., Aug. 2003, 13(4): 485-529.
|
[25] |
Gupta V. Chu spaces: A model of concurrency
[Ph.D. Dissertation]. Stanford University, Sept. 1994. |
[26] |
Web services business process execution language version 2.0. OASIS Web Services Business Process Execution Language (WSBPEL) Technical Committee, April 2007, http://www.oasis-open.org/specs/index.php#wsbpel.
|
[27] |
Wing J. Hints to specifiers. Educational Issues of Formal Methods, Hinchey M, Dean N (eds.), Ch. 5, London: Academic Press, 1996, pp.57-77.
|
[28] |
Du X, Xing C, Zhou L. A Chu spaces semantics of BPEL-like fault handling. In Proc. The 4th International Conference on Frontier of Computer Science and Technology (FCST 2009), Shanghai, China, Dec. 17-19, 2009, pp.317-323.
|
[29] |
Du X, Xing C, Zhou L. A Chu spaces semantics of control flow in BPEL. In Proc. 2009 Asia-Pacific Services Computing Conference (APSCC 2009), Singapore, Dec. 7-11, 2009, pp.142-149.
|
[30] |
de Medeiros A A, van der Aalst W, Weijters A. Quantifying process equivalence based on observed behavior. Data & Knowledge Engineering, 2008, 64(1): 55-74.
|