We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Feng Jin, Min-Lie Huang, Xiao-Yan Zhu. Guided Structure-Aware Review Summarization[J]. Journal of Computer Science and Technology, 2011, 26(4): 676-684. DOI: 10.1007/s11390-011-1167-y
Citation: Feng Jin, Min-Lie Huang, Xiao-Yan Zhu. Guided Structure-Aware Review Summarization[J]. Journal of Computer Science and Technology, 2011, 26(4): 676-684. DOI: 10.1007/s11390-011-1167-y

Guided Structure-Aware Review Summarization

Funds: This work was partly supported by the National Natural Science Foundation of China under Grant Nos. 60973104 and 60803075, and with the aid of a grant from the International Development Research Center, Ottawa, Canada IRCI Project.
More Information
  • Received Date: November 02, 2010
  • Revised Date: June 09, 2011
  • Published Date: July 04, 2011
  • Although the goal of traditional text summarization is to generate summaries with diverse information, most of those applications have no explicit definition of the information structure. Thus, it is difficult to generate truly structure-aware summaries because the information structure to guide summarization is unclear. In this paper, we present a novel framework to generate guided summaries for product reviews. The guided summary has an explicitly defined structure which comes from the important aspects of products. The proposed framework attempts to maximize expected aspect satisfaction during summary generation. The importance of an aspect to a generated summary is modeled using Labeled Latent Dirichlet Allocation. Empirical experimental results on consumer reviews of cars show the effectiveness of our method.
  • [1]
    Hu M, Liu B. Mining and summarizing customer reviews. In Proc. the 10th ACM SIGKDD International Conference onKnowledge Discovery and Data Mining (KDD,2004), Seattle, USA, Aug.22-25,2004, pp.168-177.
    [2]
    Liu B, Hu M, Cheng J. Opinion observer:Analyzing and comparing opinions on the Web. In Proc.the 14th International Conference on World Wide Web (WWW,2005), Chiba, Japan,May 10-14, 2005, pp.342-351.
    [3]
    Zhuang L, Jing F, Zhu X. Movie review mining andsummarization. In Proc. the 15th ACM InternationalConference on Information and Knowledge Management, Arlington,USA, Nov.5-11, 2006, pp.43-50.
    [4]
    Titov I, McDonald R. A joint model of text and aspectratings for sentiment summarization. In Proc. ACL,2008: HLT,Columbus, USA, Jun.15-20, 2008, pp.308-316.
    [5]
    Ramage D, Hall D, Nallapati R, Manning C D. Labeled LDA: Asupervised topic model for credit attribution in multi-labeled corpora.In Proc. the 2009 Conference on Empirical Methods in NaturalLanguage Processing, Singapore, Aug.6-7, 2009, pp.248-256.
    [6]
    Luhn H P. The automatic creation of literature abstracts. IBM Journal of Research and Development, April 1958, 2(2): 159-165.
    [7]
    Edmundson H P. New methods in automatic extracting. Journalof the ACM (JACM) Archive, 1969, 16(2): 264-285.
    [8]
    Erkan G, Radev D R. LexPageRank: Prestige inmulti-document text summarization. In Proc. EMNLP,Barcelona, Spain, Jul.25-26, 2004, pp.365-371.
    [9]
    Nenkova A, Vanderwende L, McKeown K. A compositionalcontext sensitive multi-document summarizer: Exploring the factorsthat influence summarization. In Proc. the 29th AnnualInternational ACM SIGIR Conference on Research and Development inInformation Retrieval, Seattle, USA, Aug.6-11, 2006, pp.573-580.
    [10]
    Toutanova K, Brockett C, Gamon M, Jagarlamundi J, Suzuki H,Vanderwende L. The pythy summarization system: Microsoft research at DUC2007. In Proc. DUC 2007, New York, USA, Apr.22-27, 2007.
    [11]
    Shen D, Sun J T, Li H, Yang Q, Chen Z. Document summarizationusing conditional random fields. In Proc. the 20th InternationalJoint Conference on Artificial Intelligence, Hyderabad, India, Jan.6-12,2007, pp.2862-2867.
    [12]
    Sauper C, Barzilay R. Automatically generatingWikipedia articles: A structure-aware approach. In Proc.ACL 2009, Suntec, Singapore, Aug.2-7, 2009, pp.208-216.
    [13]
    Lu Y, Zhai C X, Sundaresan N. Rated aspect summarization ofshort comments. In Proc. the 18th International Conference on WorldWide Web, Madrid, Spain, Apr.20-24, pp.131-140.
    [14]
    Ling X, Jiang J, He X, Mei Q, Zhai C, Schatz B. Generatinggene summaries from biomedical literature: A study of semi-structuredsummarization. Information Processing and Management, 2007, 43(6): 1777-1791.
    [15]
    Ling X, Mei Q, Zhai C X, Schatz B. Mining multi-facetedoverviews of arbitrary topics. In Proc. SIGKDD, Las Vegas, USA, Aug.24-28,2008, pp.497-505.
    [16]
    Carbonell J, Goldstein J. The use of MMR, diversity-basedreranking for reordering documents and producing summaries. In Proc. SIGIR, Melbourne, Australia, Aug.24-28, 1998, pp.335-336.
    [17]
    Agrawal R, Gollapudi S, Halverson A, Ieong S. Diversifyingsearch results. In Proc. the Second ACM International Conference onWeb Search and Data Mining, Barcelona, Spain, Feb.9-11, 2009, pp.5-14.
    [18]
    Hofmann T. Probabilistic latent semantic indexing. In Proc. the 22nd Annual International SIGIR Conference, Berkeley, US, Aug.15-19,1999, pp.50-57.
    [19]
    Blei D M, Ng A Y, Jordan M I. Latent Dirichletallocation. Journal of Machine Learning Research, 2003, 3: 993-1022.
    [20]
    Mei Q, Shen X, Zhai C X. Automatic labeling ofmultinomial topic models. In Proc. the 2007 ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining,San Jose, USA, Aug.12-15, 2007, pp.490-499.
    [21]
    Lin C, Hovy E. The automated acquisition of topic signaturesfor text summarization. In Proc. the 18th Conferenceon Computational Linguistics, Saarbrücken, Germany, Jul.31-Aug.4,2000, pp.495-501.
    [22]
    Ramage D, Dumais S, Liebling D. Characterizingmicroblogs with topic models. In Proc. ICWSM 2010,Washington, DC, USA, May 23-26, 2010.
    [23]
    Manning C, Schütze H. Foundations of Statistical NaturalLanguage Processing. MIT Press, 1999, pp.152-189.
    [24]
    Griffiths T L, Steyvers M. Finding scientific topics. In Proc. the National Academy of Sciences of the UnitedStates of America, April 6, 2004, 101(Suppl. 1): 5228-5235.
    [25]
    Wilcoxon F. Individual comparisons by ranking methods. Biometrics, 1945, 1: 80-83.
  • Related Articles

    [1]Jung-Been Lee, Taek Lee, Hoh Peter In. Topic Modeling Based Warning Prioritization from Change Sets of Software Repository[J]. Journal of Computer Science and Technology, 2020, 35(6): 1461-1479. DOI: 10.1007/s11390-020-0047-8
    [2]Yu-Yao Liu, Bo Yang, Hong-Bin Pei, Jing Huang. Neural Explainable Recommender Model Based on Attributes and Reviews[J]. Journal of Computer Science and Technology, 2020, 35(6): 1446-1460. DOI: 10.1007/s11390-020-0152-8
    [3]Sai-Sai Gong, Wei Hu, Wei-Yi Ge, Yu-Zhong Qu. Modeling Topic-Based Human Expertise for Crowd Entity Resolution[J]. Journal of Computer Science and Technology, 2018, 33(6): 1204-1218. DOI: 10.1007/s11390-018-1882-8
    [4]Tie-Ke He, Hao Lian, Ze-Min Qin, Zhen-Yu Chen, Bin Luo. PTM: A Topic Model for the Inferring of the Penalty[J]. Journal of Computer Science and Technology, 2018, 33(4): 756-767. DOI: 10.1007/s11390-018-1854-z
    [5]Zhi-Xing Li, Yue Yu, Gang Yin, Tao Wang, Huai-Min Wang. What Are They Talking About? Analyzing Code Reviews in Pull-Based Development Model[J]. Journal of Computer Science and Technology, 2017, 32(6): 1060-1075. DOI: 10.1007/s11390-017-1783-2
    [6]YANG Jianwu, CHEN Xiaoou. A Semi-Structured Document Model for Text Mining[J]. Journal of Computer Science and Technology, 2002, 17(5).
    [7]MIN Yinghua, LI Zhongcheng. An Analytical Delay Model[J]. Journal of Computer Science and Technology, 1999, 14(2): 97-115.
    [8]Ma Jiyong, Gao Wen. The Supervised Learning Gaussian Mixture Model[J]. Journal of Computer Science and Technology, 1998, 13(5): 471-474.
    [9]Liao Lejian, Shi Zhongzhi. Minimal Model Semantics for Sorted Constraint Representation[J]. Journal of Computer Science and Technology, 1995, 10(5): 439-446.
    [10]Zeng Jianchao, Hidehilio Sanada, Yoshikazu Tezuka. A Form Evaluation System and Its Data Structure for Brush-Written Chinese Characters[J]. Journal of Computer Science and Technology, 1995, 10(1): 35-41.

Catalog

    Article views (16) PDF downloads (1452) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return