SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Hossein Ajorloo, Abolfazl Lakdashti. HBIR: Hypercube-Based Image Retrieval[J]. Journal of Computer Science and Technology, 2012, 27(1): 147-162. DOI: 10.1007/s11390-012-1213-4 |
[1] |
Flickner M, Sawhney H et al. Query by image and videocontent: The QBIC system. Computer, 1995, 28(9): 23-32.
|
[2] |
Pentland A, Picard R W, Sclaroff S. Photobook: Content-based manipulation of image databases. Int. J. ComputerVision, 1996, 18(3): 233-254.
|
[3] |
Rui Y, Huang T S, Mehrotra S, Ortega M. Automatic match-ing tool selection using relevance feedback in MARS. In Proc.the 2nd Int. Conf. Visual Information Systems, Dec. 1997,pp.109-116.
|
[4] |
Yoshitaka A, Ichikawa T. A Survey on content-based retrieval for multimedia databases. IEEE Transactions on Knowledgeand Data Engineering, 1999, 11(1): 81-93.
|
[5] |
Smeulders A, Worring M, Santini S, Gupta A, Jain R.Content-based image retrieval at the end of the early years.IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2000, 22(12): 1349-1380.
|
[6] |
Zhou X, Rui Y, Huang T S. Exploration of Visual Data.Kluwer Academic Publishers, 2003.
|
[7] |
Rocchio J. Relevance feedback in information retrieval. InThe SMART System-Experiments in Automatic DocumentProcessing, Salton G (ed.), Prentice Hall, 1971, pp.313-323.
|
[8] |
Ciocca G, Schettini R. A relevance feedback mechanism forcontent-based image retrieval. Information Processing andManagement, 1999, 35(6): 605-632.
|
[9] |
Rui Y, Huang T S, Ortega M, Mehrotra S. Relevance feed-back: A power tool for interactive content-based image re-trieval. IEEE Transactions on Circuits and Systems forVideo Technology, 1998, 8(5): 644-655.
|
[10] |
Peng J, Bhanu B, Qing S. Probabilistic feature relevancelearning for content-based image retrieval. Computer Visionand Image Understanding, 1999, 75(1-2): 150-164.
|
[11] |
Meilhac C, Nastar C. Relevance feedback and category searchin image database. In Proc. Int. Conf. Multimedia Comput-ing and Systems, June 1999, pp.512-517.
|
[12] |
Cox I, Miller M, Minka T, Papathomas T, Yianilos P. TheBayesian image retrieval system, PicHunter: Theory, imple-mentation, and psychophysical experiments. IEEE Transac-tions on Image Processing, 2000, 9(1): 20-37.
|
[13] |
Tong S, Chang E. Support vector machine active learning forimage retrieval. In Proc. the 9th ACM Int. Conf. Multi-media (ACM Press), Ottawa, Canada, Sept. 30-Oct. 5, 2001,pp.107-118.
|
[14] |
Tieu K, Viola P. Boosting image retrieval. In Proc. IEEEConf. Computer Vision and Pattern Recognition (CVPR),June 2000, pp.228-235.
|
[15] |
Vasconcelos N, Lippman A. Learning from user feedback inimage retrieval systems. In Proc. Neural Information Pro-cessing System, 1999.
|
[16] |
Lin Y Y, Liu T L, Chen H T. Semantic manifold learning forimage retrieval. In Proc. the 13th ACM Int. Conf. Multime-dia (ACM MM), Singapore, Nov. 2005, pp.249-258.
|
[17] |
Yu J, Tian Q. Learning image manifolds by semantic subspaceprojection. In Proc. the 14th ACM Conference on Multime-dia (ACM MM), Santa Barbara, USA, Oct. 2006, pp.297-306.
|
[18] |
He X F, Cai D, Han J. Learning a maximum margin sub-space for image retrieval. IEEE Transactions on Knowledgeand Data Engineering, Feb. 2008, 20(2): 189-201.
|
[19] |
Lakdashti A, Moin M S. A new content-based image retrievalapproach based on pattern orientation histogram. In Proc.the 3rd Int. Conf. Computer Vision/Computer GraphicsCollaboration Techniques, March 2007, pp.587-595.
|