SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Marcelo G. Armentano, Daniela Godoy, Analia Amandi. Topology-Based Recommendation of Users in Micro-Blogging Communities[J]. Journal of Computer Science and Technology, 2012, 27(3): 624-634. DOI: 10.1007/s11390-012-1249-5 |
[1] |
Java A, Song X, Finin T, Tseng B. Why we twitter: Un-derstanding microblogging usage and communities. In Proc.WebKDD/SNA-KDD, Aug. 2007, pp.56-65.
|
[2] |
Krishnamurthy B, Gill P, Arlitt M. A few chirps about twit-ter. In Proc. WOSP, Aug. 2008, pp.19-24.
|
[3] |
Weng J, Lim E P, Jiang J, He Q. TwitterRank: Finding topic-sensitive influential twitterers. In Proc. WSDM, Feb. 2010,pp.261-270.
|
[4] |
Yamaguchi Y, Takahashi T, Amagasa T, Kitagawa H. TU-Rank: Twitter user ranking based on user-tweet graph analy-sis. In Proc. the 11th Int. Conf. Web In formation SystemsEngineering, Dec. 2010, pp.240-253.
|
[5] |
Chen J, Nairn R, Nelson L, Bernstein M, Chi E. Short andtweet: Experiments on recommending content from informa-tion streams. In Proc. CHI, April 2010, pp.1185-1194.
|
[6] |
Phelan O, McCarthy K, Smyth B. Using twitter to recom-mend real-time topical news. In Proc. RecSys, 2009, pp.385-388.
|
[7] |
Esparza S G, O'Mahony M P, Smyth B. On the real-time webas a source of recommendation knowledge. In Proc. RecSys,Sept. 2010, pp.305-308.
|
[8] |
Hannon J, Bennett M, Smyth B. Recommending twitter usersto follow using content and collaborative filtering approaches.In Proc. RecSys, Sept. 2010, pp.199-206.
|
[9] |
Guy I, Ronen I, Wilcox E. Do you know?: Recommendingpeople to invite into your social network. In Proc. IUI, Feb.2009, pp.77-86.
|
[10] |
Liben-Nowell D, Kleinberg J. The link prediction problem forsocial networks. In Proc. CIKM, Nov. 2003, pp.556-559.
|
[11] |
Chen J, Geyer W, Dugan C, Muller M, Guy I. Make newfriends, but keep the old: Recommending people on socialnetworking sites. In Proc. CHI, April 2010, pp.201-210.
|
[12] |
Lo S, Lin C. WMR——A graph-based algorithm for friend rec-ommendation. In Proc. WI, Dec. 2006, pp.121-128.
|
[13] |
Kwak H, Lee C, Park H, Moon S. What is Twitter, a so-cial network or a news media? In Proc. WWW, April 2010,pp.591-600.
|
[14] |
Cha M, Haddadi H, Benevenuto F, Gummadi K P. Measur-ing user influence in Twitter: The million follower fallacy. InProc. ICWSM, May 2010.
|
[15] |
Garcia R, Amatriain X. Weighted content based methods forrecommending connections in online social networks. In Proc.the 2nd Workshop on Recommender Systems and the SocialWeb, Oct. 2010, pp.68-71.
|
[16] |
Abel F, Gao Q, Houben G J, Tao K. Analyzing user modelingon twitter for personalized news recommendations. In Proc.UMAP, July 2011, pp.1-12.
|
[17] |
Sun A R, Cheng J, Zeng D D. A novel recommendation frame-work for micro-blogging based on information diffusion. InProc. Workshop on Information Technologies and Systems,Dec. 2009.
|
[18] |
Phelan O, McCarthy K, Bennett M, Smyth B. Terms of afeather: Content-based news recommendation and discoveryusing twitter. In Proc. ECIR, April 2011, pp.448-459.
|
[19] |
Brin S, Page L. The anatomy of a large-scale hypertextualWeb search engine. Computer Networks and ISDN Systems,1998, 30(1): 107-117.
|
[20] |
Joachims T, Granka L, Pan B, Hembrooke H, Gay G. Accu-rately interpreting click through data as implicit feedback. InProc. SIGIR, Aug. 2005, pp.154-161.
|
[21] |
Deshpande M, Karypis G. Item-based top-N recommenda-tion algorithms. ACM Transactions on Information Systems,2004, 22(1): 143-177.
|
[1] | Peng-Sheng Liu, Li-Nan Zheng, Jia-Le Chen, Guang-Fa Zhang, Yang Xu, Jin-Yun Fang. Enhancing Recommendation with Denoising Auxiliary Task[J]. Journal of Computer Science and Technology, 2024, 39(5): 1123-1137. DOI: 10.1007/s11390-024-4069-5 |
[2] | Bushra Alhijawi, Ghazi AL-Naymat. Novel Positive Multi-Layer Graph Based Method for Collaborative Filtering Recommender Systems[J]. Journal of Computer Science and Technology, 2022, 37(4): 975-990. DOI: 10.1007/s11390-021-0420-2 |
[3] | Reza Jafari Ziarani, Reza Ravanmehr. Serendipity in Recommender Systems: A Systematic Literature Review[J]. Journal of Computer Science and Technology, 2021, 36(2): 375-396. DOI: 10.1007/s11390-020-0135-9 |
[4] | Yu-Yao Liu, Bo Yang, Hong-Bin Pei, Jing Huang. Neural Explainable Recommender Model Based on Attributes and Reviews[J]. Journal of Computer Science and Technology, 2020, 35(6): 1446-1460. DOI: 10.1007/s11390-020-0152-8 |
[5] | Yang Liu, Zhi Li, Wei Huang, Tong Xu, En-Hong Chen. Exploiting Structural and Temporal Influence for Dynamic Social-Aware Recommendation[J]. Journal of Computer Science and Technology, 2020, 35(2): 281-294. DOI: 10.1007/s11390-020-9956-9 |
[6] | Qi Liu, Hong-Ke Zhao, Le Wu, Zhi Li, En-Hong Chen. Illuminating Recommendation by Understanding the Explicit Item Relations[J]. Journal of Computer Science and Technology, 2018, 33(4): 739-755. DOI: 10.1007/s11390-018-1853-0 |
[7] | Ming-Xin Gan, Lily Sun, Rui Jiang. Trinity: Walking on a User-Object-Tag Heterogeneous Network for Personalised Recommendations[J]. Journal of Computer Science and Technology, 2016, 31(3): 577-594. DOI: 10.1007/s11390-016-1648-0 |
[8] | Xin Xin, Chin-Yew Lin, Xiao-Chi Wei, He-Yan Huang. When Factorization Meets Heterogeneous Latent Topics: An Interpretable Cross-Site Recommendation Framework[J]. Journal of Computer Science and Technology, 2015, 30(4): 917-932. DOI: 10.1007/s11390-015-1570-x |
[9] | Xiang-Liang Zhang, Tak Man Desmond Lee, Georgios Pitsilis. Securing Recommender Systems Against Shilling Attacks Using Social-Based Clustering[J]. Journal of Computer Science and Technology, 2013, 28(4): 616-624. DOI: 10.1007/s11390-013-1362-0 |
[10] | Jun Hu, Bing Wang, Yu Liu, De-Yi Li. Personalized Tag Recommendation Using Social Influence[J]. Journal of Computer Science and Technology, 2012, 27(3): 527-540. DOI: 10.1007/s11390-012-1241-0 |