SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Amin Nikanjam, Adel Rahmani. Exploiting Bivariate Dependencies to Speedup Structure Learning in Bayesian Optimization Algorithm[J]. Journal of Computer Science and Technology, 2012, 27(5): 1077-1090. DOI: 10.1007/s11390-012-1285-1 |
[1] |
Larrañaga P, Lozano J A. Estimation of Distribution Algorithms:A New Tool for Evolutionary Computation. KluwerAcademic, 2002.
|
[2] |
Pelikan M, Goldberg D E, Cantu-Paz E. BOA: The Bayesianoptimization algorithm. In Proc. Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17,1999, pp.525-532.
|
[3] |
Mühlenbein H, Mahnig T. FDA-A scalable evolutionary algorithmfor the optimization of additively decomposed functions.Evolutionary Computation, 1999, 7(4): 353-376.
|
[4] |
Etxeberria R, Larrañaga P. Global optimization usingBayesian networks. In Proc. the 2nd Symposium on ArtificialIntelligence, La Habana, Cuba, July 15-17, 1999, pp.332-339.
|
[5] |
Pelikan M. Hierarchical Bayesian Optimization Algorithm:Toward a New Generation of Evolutionary Algorithm.Springer-Verlag, 2005.
|
[6] |
Mühlenbein H, Mahnig T. Evolutionary synthesis of Bayesiannetworks for optimization. In Advances in Evolutionary Syn-thesis of Intelligent Agents, Honavar V, Patel M, BalakrishnanK (eds.), MIT Press, 2001, pp.429-455.
|
[7] |
Soto M, Ochoa A, Acid S, Campos L M. Bayesian evolutionaryalgorithms based on simplified models. In Proc. the 2ndSymposium on Artificial Intelligence, La Habana, Cuba, July15-17, 1999, pp.360-367.
|
[8] |
Chen T, Tang K, Chen G, Yao X. Analysis of computationaltime of simple estimation of distribution algorithms. IEEETransactions on Evolutionary Computation, 2010, 14(1): 1-22.
|
[9] |
Sastry K, Pelikan M, Goldberg D E. Efficiency enhancementof estimation of distribution algorithms. In Scalable Opti-mization via Probabilistic Modeling: From Algorithms to Ap-plications, Pelikan M, Sastry K, Cantu-Paz E (eds.), Springer,2006, pp.161-185.
|
[10] |
Pelikan M, Sastry K, Goldberg D E. Sporadic model buildingfor efficiency enhancement of the hierarchical BOA. GeneticProgramming and Evolvable Machines, 2008, 9(1): 53-84.
|
[11] |
Dong W, Yao X. NichingEDA: Utilizing the diversity insidea population of EDAs for continuous optimization. In Proc.IEEE Congress on Evolutionary Computation, Hong Kong,China, June 1-6, 2008, pp.1260-1267.
|
[12] |
Dong W, Chen T, Tino P, Yao X. Scaling up estimation ofdistribution algorithms for continuous optimization. ArxivPreprint ArXiv: 1111.2221 v1, 2011.
|
[13] |
Dong W, Yao X. Unified eigen analysis on multivariate Gaussianbased estimation of distribution algorithms. InformationSciences, 2008, 178(15): 3000-3023.
|
[14] |
Luong H N, Nguyen H T T, Ahn C W. Entropy-based efficiencyenhancement techniques for evolutionary algorithms.Information Sciences, 2012, 188(1): 100-120.
|
[15] |
Howard R A, Matheson J E. Influence diagrams. In Readingson the Principles and Applications of Decision Analysis, SdgDecision Systems, 1981, pp.721-762.
|
[16] |
Pearl J. Probabilistic Reasoning in Intelligent Systems: Networksof Plausible Inference. Morgan Kaufmann, 1988.
|
[17] |
Chickering D M. Learning equivalence classes of Bayesiannetworkstructures. J. Machine Learning Research, 2002,2(3/1): 445-498.
|
[18] |
Chickering D M, Heckerman D, Meek C. Large-sample learningof Bayesian networks is NP-hard. J. Machine LearningResearch, 2004, 5(12/1): 1287-1330.
|
[19] |
Henrion M. Propagation of uncertainty in Bayesian networksby probabilistic logic sampling. In Proc. Uncertainty in Arti-ficial Intelligence, Seattle, USA, July 10-12, 1988, pp.149-163.
|
[20] |
Cano R, Sordo C, Gutiérrez J M. Applications of Bayesiannetworks in meteorology. In Advances in Bayesian Networks,Gámez M S, Salmerón J A (eds.), Springer, 2004, pp.309-327.
|
[21] |
Friedman N, Nachman I, Peér D. Learning Bayesian networkstructure from massive datasets: The “sparse candidate” algorithm.In Proc. Uncertainty in Artificial Intelligence,Stockholm, Sweden, July 30-August 1, 1999, pp.206-215.
|
[22] |
Tsamardinos I, Brown L E, Aliferis C F. The max-min hillclimbingBayesian network structure learning algorithm. Ma-chine Learning, 2006, 65(1): 31-78.
|
[23] |
Gámez J A, Mateo J L, Puerta J M. Learning Bayesian networksby hill climbing: Efficient methods based on progressiverestriction of the neighborhood. Data Mining and KnowledgeDiscovery, 2011, 22(1): 106-148.
|
[24] |
Yu T L, Goldberg D E, Yassine A, Chen Y P. Genetic algorithmdesign inspired by organizational theory: Pilot study ofa dependency structure matrix driven genetic algorithm. InProc. Artificial Neural Networks in Engineering, St. Louis,Missouri, USA, November 2-5, 2003, pp.327-332.
|
[25] |
Yu T L, Goldberg D E, Sastry K, Lima C F, Pelikan M. Dependencystructure matrix, genetic algorithms, and effectiverecombination. Evolutionary Computation, 2009, 17(4): 595-626.
|
[26] |
Yassine A, Joglekar N, Braha D, Eppinger S, Whitney D. Informationhiding in product development: The design churneffect. Research in Engineering Design, 2003, 14(3): 145-161.
|
[27] |
Nikanjam A, Sharifi H, Helmi B H, Rahmani A. Enhancingthe efficiency of genetic algorithm by identifying linkagegroups using DSM clustering. In Proc. IEEE Congresson Evolutionary Computation, Barcelona, Spain, July 18-23,2010, pp.1-8.
|
[28] |
Nikanjam A, Sharifi H, Rahmani A T. Efficient model buildingin competent genetic algorithms using DSM clustering.AI Communications, 2010, 24(3): 213-231.
|
[29] |
Duque T S P C, Goldberg D E. ClusterMI: Building probabilisticmodels using hierarchical clustering and mutual information.In Exploitation of Linkage Learning in EvolutionaryAlgorithms, Chen Y P (ed.), Springer, 2010, pp.123-137.
|
[30] |
Lu Q, Yao X. Clustering and learning Gaussian distributionfor continuous optimization. IEEE Transactions on Systems,Man, and Cybernetics, Part C: Applications and Reviews,2005, 35(2): 195-204.
|
[31] |
Aporntewan C, Chongstitvatana P. Building-block identificationby simultaneity matrix. Soft Computing, 2007, 11(6):541-548.
|
[32] |
Hauschild M, Pelikan M, Lima C F, Sastry K. Analyzingprobabilistic models in hierarchical BOA on traps and spinglasses. In Proc. Genetic and Evolutionary ComputationConference, London, England, July 7-11, 2007, pp.523-530.
|
[33] |
Goldberg D E, Sastry K. Genetic Algorithms: The Design ofInnovation (2nd edition), Springer, 2010.
|
[34] |
Munetomo M, Goldberg D E. Identifying linkage groups bynonlinearity/non-monotonicity detection. In Proc. Geneticand Evolutionary Computation Conference, Orlando, Florida,USA, July 13-17, 1999, pp.433-440.
|
[35] |
Yu T L. A matrix approach for finding extreme: Problemswith modularity, hierarchy and overlap [PhD Thesis]. Universityof Illinois at Urbana-Champaign, USA, 2006.
|
[36] |
Tsuji M, Munetomo M. Linkage analysis in genetic algorithms.In Computational Intelligence Paradigms: Innova-tive Applications, Springer, 2008, pp.251-279.
|
[37] |
Fischer K H, Hertz J A. Spin Glasses. Cambridge UniversityPress, 1991.
|
[38] |
Mühlenbein H, Mahnig T, Rodriguez A O. Schemata, distributionsand graphical models in evolutionary optimization.J. Heuristics, 1999, 5(2): 215-247.
|
[39] |
Santana R. Estimation of distribution algorithms withKikuchi approximations. Evolutionary Computation, 2005,13(1): 67-97.
|
[40] |
Monien B, Sudborough I H. Min cut is NP-complete for edgeweighted trees. Theoretical Computer Science, 1988, 58(1-3):209-229.
|
[41] |
Karshenas H, Nikanjam A, Helmi B H, Rahmani A T. Combinatorialeffects of local structures and scoring metrics inBayesian optimization algorithm. In Proc. World Summiton Genetic and Evolutionary Computation, Shanghai, China,June 12-14, 2008, pp.263-270.
|
[42] |
Ocenasek J, Schwarz J. The parallel Bayesian optimizationalgorithm. In Proc. European Symposium on ComputationalIntelligence, Kosice, Slovak Republic, August 30-September1, 2000, pp.61-67.
|
[43] |
Lima C F, Lobo F G, Pelikan M. From mating pool distributionsto model overfitting. In Proc. Genetic and Evolution-ary Computation Conference, Atlanta, GA, USA, July 12-16,2008, pp.431-438.
|
[44] |
Ackley D H. An empirical study of bit vector function optimization.In Genetic Algorithms and Simulated Annealing,Davies L (ed.), Morgan Kaufmann, 1987, pp.170-204.
|
[1] | Teng-Yue Han, Peng-Fei Wang, Shao-Zhang Niu. Multimodal Interactive Network for Sequential Recommendation[J]. Journal of Computer Science and Technology, 2023, 38(4): 911-926. DOI: 10.1007/s11390-022-1152-7 |
[2] | Bo-Han Li, An-Man Zhang, Wei Zheng, Shuo Wan, Xiao-Lin Qin, Xue Li, Hai-Lian Yin. GRIP: A Group Recommender Based on Interactive Preference Model[J]. Journal of Computer Science and Technology, 2018, 33(5): 1039-1055. DOI: 10.1007/s11390-018-1846-z |
[3] | Jing Wu, Paul L. Rosin, Xianfang Sun, Ralph R. Martin. Improving Shape from Shading with Interactive Tabu Search[J]. Journal of Computer Science and Technology, 2016, 31(3): 450-462. DOI: 10.1007/s11390-016-1639-1 |
[4] | Jun-Gang Xu, Yue Zhao, Jian Chen, Chao Han. A Structure Learning Algorithm for Bayesian Network Using Prior Knowledge[J]. Journal of Computer Science and Technology, 2015, 30(4): 713-724. DOI: 10.1007/s11390-015-1556-8 |
[5] | Concha Bielza, Juan A. Fernández del Pozo, Pedro Larrañaga. Parameter Control of Genetic Algorithms by Learning and Simulation of Bayesian Networks —— A Case Study for the Optimal Ordering of Tables[J]. Journal of Computer Science and Technology, 2013, 28(4): 720-731. DOI: 10.1007/s11390-013-1370-0 |
[6] | Yang Li, Chang-Jun Hu, Xin Yao. Innovative Batik Design with an Interactive Evolutionary Art System[J]. Journal of Computer Science and Technology, 2009, 24(6): 1035-1047. |
[7] | LI Yang, GUAN ZhiWei, DAI GuoZhong, REN XiangShi, HAN Yong. A Context-Aware Infrastructure for Supporting Applications with Pen-Based Interaction[J]. Journal of Computer Science and Technology, 2003, 18(3). |
[8] | YANG Bo, ZHENG Fengzhou, WANG Dingxing, ZHENG Weimin. Interactive and Symbolic Data Dependence Analysis Based on Renges of Expressions[J]. Journal of Computer Science and Technology, 2002, 17(2). |
[9] | LIANG Yongquan, SHI Zhongzhi. A Multimedia Synchronization Model Based on Timed Petri Net[J]. Journal of Computer Science and Technology, 1999, 14(3): 276-282. |
[10] | Dong Yunmei. An Interactive Learning Algorithm for Acquisition of Concepts Represented as CFL[J]. Journal of Computer Science and Technology, 1998, 13(1): 1-8. |