SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Wei Wu, Hang Li, Yun-Hua Hu, Rong Jin. A Kernel Approach to Multi-Task Learning with Task-Specific Kernels[J]. Journal of Computer Science and Technology, 2012, 27(6): 1289-1301. DOI: 10.1007/s11390-012-1305-1 |
[1] |
Caruana R. Multitask learning. Machine Learning, 1997,28(1): 41-75.
|
[2] |
Ben-David S, Schuller R. Exploiting task relatedness for mul-tiple task learning. In Lecture Notes in Computer Science,Carbonell J, Siekmann J (eds.), Springer, 2003, pp.567-580.
|
[3] |
Evgeniou T, Micchelli C, Pontil M. Learning multiple taskswith kernel methods. Journal of Machine Learning Research,2005, 6(April): 615-637.
|
[4] |
Kato T, Kashima H, Sugiyama M, Asai K. Multi-task learn-ing via conic programming. In Proc. the 22nd Conf. NeuralInformation Processing System, Dec. 2008, pp.737-744.
|
[5] |
Evgeniou T, Pontil M. Regularized multi-task learning. InProc. the 10th SIGKDD, Aug. 2004, pp.109-117.
|
[6] |
Micchelli C, Pontil M. Kernels for multi-task learning. InProc. the 19th NIPS, Dec. 2005, pp.921-928.
|
[7] |
Ando R K, Zhang T. A framework for learning predictivestructures from multiple tasks and unlabeled data. Journalof Machine Learning Research, 2005, 6(Nov.): 1817-1853.
|
[8] |
Argyriou A, Evgeniou T, Pontil M. Multi-task feature learn-ing. In Proc. NIPS, December 2007, pp.41-48.
|
[9] |
Schölkopf B, Smola A. Learning with Kernels: Support VectorMachines, Regularization, Optimization, and Beyond. Cam-bridge, Massachusetts, USA: MIT Press, 2002.
|
[10] |
Hofmann T, Schölkopf B, Smola A. Kernel methods in ma-chine learning. Annals of Statistics, 2008, 36(3): 1171-1220.
|
[11] |
Lanckriet G R, Cristianini N, Bartlett P, Ghaoui L, Jordan M.Learning the kernel matrix with semi-definite programming.In Proc. the 19th ICML, July 2002, pp.323-330.
|
[12] |
Bach F, Lanckriet G R, Jordan M. Multiple kernel learning,conic duality, and the SMO algorithm. In Proc. the 21stICML, July 2004, Article No. 6.
|
[13] |
Tang L, Chen J, Ye J. On multiple kernel learning with multi-ple labels. In Proc. the 21st IJCAI, July 2009, pp.1255-1260.
|
[14] |
Ji S, Sun L, Jin R, Ye J. Multi-label multiple kernel learning.In Proc. the 22nd NIPS, 2008, pp.777-784
|
[15] |
Duan L, Tsang I, Xu D, Chua T. Domain adaptation frommultiple sources via auxiliary classifiers. In Proc. the 26thICML, June 2009, pp.289-296.
|
[16] |
Aronszajn N. Theory of reproducting kernels. Transactionsof the American Mathematical Society, 1950, 68(3): 337-404.
|
[17] |
Cucker F, Smale S. On the mathematical foundations of learn-ing. Bulletin of the American Mathematical Society, 2002,39(1): 1-49.
|
[18] |
Renardy M, Rogers R. An Introduction to Partial DifferentialEquations. New York, USA: Springer-Verlag, 1993.
|
[19] |
Elisseeff A, Weston J. Kernel methods for multi-labelled clas-sification and categorical regression problems. In Proc. the16th NIPS, December 2002, pp.681-688.
|
[20] |
Lewis D. Evaluating text categorization. In Proc. the Work-shop on Speech and Natural Language, Feb. 1991, pp.312-318.
|
[21] |
Lanckriet G R, Deng M, Cristianini N, Jordan M, Noble W.Kernel-based data fusion and its application to protein func-tion prediction in yeast. In Proc. Pacific Symp. Biocomput-ing, January 2004, pp.300-311.
|
[22] |
Dieudonn? J. Foundations of Modern Analysis (2nd edition).New York, USA: Academic Press, 1969.
|
[23] |
Belkin M, Niyogi P, Sindhwani V. Manifold regularization:A geometric framework for learning from labeled and un-labeled examples. Journal of Machine Learning Research,2006, 7(Nov.): 2399-2434.
|
[24] |
Bartlett P, Mendelson S. Rademacher and Gaussian complex-ities: Risk bounds and structural results. Journal of MachineLearning Research, 2002, 3(Nov.): 463-482.
|
[1] | Cheng-Zhang Zhu, Rong Hu, Bei-Ji Zou, Rong-Chang Zhao, Chang-Long Chen, Ya-Long Xiao. Automatic Diabetic Retinopathy Screening via Cascaded Framework Based on Image- and Lesion-Level Features Fusion[J]. Journal of Computer Science and Technology, 2019, 34(6): 1307-1318. DOI: 10.1007/s11390-019-1977-x |
[2] | Tie-Ke He, Hao Lian, Ze-Min Qin, Zhen-Yu Chen, Bin Luo. PTM: A Topic Model for the Inferring of the Penalty[J]. Journal of Computer Science and Technology, 2018, 33(4): 756-767. DOI: 10.1007/s11390-018-1854-z |
[3] | Lan Yao, Feng Zeng, Dong-Hui Li, Zhi-Gang Chen. Sparse Support Vector Machine with Lp Penalty for Feature Selection[J]. Journal of Computer Science and Technology, 2017, 32(1): 68-77. DOI: 10.1007/s11390-017-1706-2 |
[4] | Ratnakar Dash, Pankaj Kumar Sa, Banshidhar Majhi. Particle Swarm Optimization Based Support Vector Regression for Blind Image Restoration[J]. Journal of Computer Science and Technology, 2012, 27(5): 989-995. DOI: 10.1007/s11390-012-1279-z |
[5] | Yuan Ping, Ying-Jie Tian, Ya-Jian Zhou, Yi-Xian Yang. Convex Decomposition Based Cluster Labeling Method for Support Vector Clustering[J]. Journal of Computer Science and Technology, 2012, (2): 428-442. DOI: 10.1007/s11390-012-1232-1 |
[6] | Bin Zhang, Jia-Hai Yang, Jian-Ping Wu, Ying-Wu Zhu. Diagnosing Traffic Anomalies Using a Two-Phase Model[J]. Journal of Computer Science and Technology, 2012, (2): 313-327. DOI: 10.1007/s11390-012-1225-0 |
[7] | Lei Jia, Shi-Zhong Liao, Li-Zhong Ding. Learning with Uncertain Kernel Matrix Set[J]. Journal of Computer Science and Technology, 2010, 25(4): 709-727. DOI: 10.1007/s11390-010-1055-x |
[8] | Bin Gu, Jian-Dong Wang, Tao Li. Ordinal-Class Core Vector Machine[J]. Journal of Computer Science and Technology, 2010, 25(4): 699-708. DOI: 10.1007/s11390-010-1054-y |
[9] | Xu Sun, Hou-Feng Wang, Bo Wang. Predicting Chinese Abbreviations from Definitions: An Empirical Learning Approach Using Support Vector Regression[J]. Journal of Computer Science and Technology, 2008, 23(4): 602-611. |
[10] | PENG wei, LU Xicheng. An Approach to Support IP Multicasting in Networks with Mobile Hosts[J]. Journal of Computer Science and Technology, 1999, 14(6): 529-538. |