Who Blocks Who: Simultaneous Segmentation of Occluded Objects
-
Abstract
In this paper, we present a simultaneous segmentation algorithm for multiple highly-occluded objects, which combines high-level knowledge and low-level information in a unified framework. The high-level knowledge provides sophisticated shape priors with the consideration of blocking relationship between nearby objects. Different from conventional layered model which attempts to solve the full ordering problem, we decompose the problem into a series of pairwise ones and this makes our algorithm scalable to a large number of objects. Objects are segmented in pixel level with higher-order soft constraints from superpixels, by a dual-level conditional random field. The model is optimized alternately by object layout and pixel-wise segmentation. We evaluate our system on different objects, i.e., clothing and pedestrian, and show impressive segmentation results and significant improvement over state-of-the-art segmentation algorithms.
-
-