We use cookies to improve your experience with our site.
Yi-Xiao Yin, Yun-Ji Chen, Qi Guo, Tian-Shi Chen. Prevention from Soft Errors via Architecture Elasticity[J]. Journal of Computer Science and Technology, 2014, 29(2): 247-254. DOI: 10.1007/s11390-014-1427-8
Citation: Yi-Xiao Yin, Yun-Ji Chen, Qi Guo, Tian-Shi Chen. Prevention from Soft Errors via Architecture Elasticity[J]. Journal of Computer Science and Technology, 2014, 29(2): 247-254. DOI: 10.1007/s11390-014-1427-8

Prevention from Soft Errors via Architecture Elasticity

  • Due to the decreasing threshold voltages, shrinking feature size, as well as the exponential growth of on-chip transistors, modern processors are increasingly vulnerable to soft errors. However, traditional mechanisms of soft error mitigation take actions to deal with soft errors only after they have been detected. Instead of the passive responses, this paper proposes a novel mechanism which proactively prevents from the occurrence of soft errors via architecture elasticity. In the light of a predictive model, we adapt the processor architectures holistically and dynamically. The predictive model provides the ability to quickly and accurately predict the simulation target across different program execution phases on any architecture configurations by leveraging an artificial neural network model. Experimental results on SPEC CPU 2000 benchmarks show that our method inherently reduces the soft error rate by 33.2% and improves the energy efficiency by 18.3% as compared with the static configuration processor.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return