A High-Performance and Cost-Effcient Interconnection Network for High-Density Servers
-
Abstract
The high-density server is featured as low power, low volume, and high computational density. With the rising use of high-density servers in data-intensive and large-scale web applications, it requires a high-performance and cost-effcient intra-server interconnection network. Most of state-of-the-art high-density servers adopt the fully-connected intra-server network to attain high network performance. Unfortunately, this solution costs too much due to the high degree of nodes. In this paper, we exploit the theoretically optimized Moore graph to interconnect the chips within a server. Accounting for the suitable size of applications, a 50-size Moore graph, called Hoffman-Singleton graph, is adopted. In practice, multiple chips should be integrated onto one processor board, which means that the original graph should be partitioned into homogeneous connected subgraphs. However, the existing partition scheme does not consider above problem and thus generates heterogeneous subgraphs. To address this problem, we propose two equivalent-partition schemes for the Hoffman-Singleton graph. In addition, a logic-based and minimal routing mechanism, which is both time and area effcient, is proposed. Finally, we compare the proposed network architecture with its counterparts, namely the fully-connected, Kautz and Torus networks. The results show that our proposed network can achieve competitive performance as fully-connected network and cost close to Torus.
-
-