SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Fatemeh Azmandian, Ayse Yilmazer, Jennifer G. Dy, Javed A. Aslam, David R. Kaeli. Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection[J]. Journal of Computer Science and Technology, 2014, 29(3): 408-422. DOI: 10.1007/s11390-014-1439-4 |
[1] |
Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319.
|
[2] |
Kira K, Rendell L A. A practical approach to feature selection. In Proc. the 9th ICML, July 1992, pp.249-256.
|
[3] |
Liu H, Motoda H. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998.
|
[4] |
Kohavi R, John G H. Wrappers for feature subset selection. Artificial Intelligence, 1997, 97(1/2): 273-324.
|
[5] |
Dash M, Liu H. Feature selection for classification. Intelligent Data Analysis, 1997, 1(1/4): 131-156.
|
[6] |
Guyon I, Elisseeff A. An introduction to variable and feature selection. J. Machine Learning Research, 2003, 3: 1157-1182.
|
[7] |
Nguyen H V, Gopalkrishnan V. Feature extraction for outlier detection in high-dimensional spaces. In Proc. the 4th Int. Workshop. Feature Selection in Data Mining, June 2010, pp.66-75.
|
[8] |
Azmandian F, Yilmazer A, Dy J et al. GPU-accelerated feature selection for outlier detection using the local kernel density ratio. In Proc. the 12th ICDM, December 2012, pp.51-60.
|
[9] |
Tibshirani R. Regression shrinkage and selection via the lasso. J. Royal Statistical Society, Series B, 1996, 58(1): 267-288.
|
[10] |
Song L, Bedo J, Borgwardt K M et al. Gene selection via the BAHSIC family of algorithms. Bioinformatics, 2007, 23(3): i490-i498.
|
[11] |
Wu X, Yu K, Ding W et al. Online feature selection with streaming features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1178-1192.
|
[12] |
Chen X W, Wasikowski M. FAST: A ROC-based feature selection metric for small samples and imbalanced data classification problems. In Proc. the 14th KDD, August 2008, pp.124-132.
|
[13] |
Aggarwal C, Yu S. An effective and effcient algorithm for high-dimensional outlier detection. The VLDB Journal, 2005, 14(2): 211-221.
|
[14] |
de Vries T, Chawla S, Houle M E. Density-preserving projections for large-scale local anomaly detection. Knowledge and Information Systems, 2012, 32(1): 25-52.
|
[15] |
Branch J W, Giannella C, Szymanski B K et al. In-network outlier detection in wireless sensor networks. Knowledge and Information Systems, 2013, 34(1): 23-54.
|
[16] |
Hido S, Tsuboi Y, Kashima H et al. Statistical outlier detection using direct density ratio estimation. Knowledge and Information Systems, 2011, 26(2): 309-336.
|
[17] |
Sugiyama M, Yamada M, von Bünau P et al. Direct densityratio estimation with dimensionality reduction via leastsquares hetero-distributional subspace search. Neural Networks, 2011, 24(2): 183-198.
|
[18] |
Smola A, Song L, Teo C H. Relative novelty detection. In Proc. the 12th AISTATS, April 2009, pp.536-543.
|
[19] |
Hawkins D M. Identification of Outliers. London, New York: Chapman and Hall, 1980.
|
[20] |
Breunig M M, Kriegel H P, Ng R T et al. LOF: Identifying density-based local outliers. ACM SIGMOD Record, 2000, 29(2): 93-104.
|
[21] |
Horn R A, Johnson C R. Matrix Analysis. Cambridge, New York: Cambridge University Press, 1985.
|
[22] |
Balcan M F, Blum A. On a theory of learning with similarity functions. In Proc. the 23rd International Conference on Machine Learning (ICML), June 2006, pp.73-80.
|
[23] |
Parzen E. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076.
|
[24] |
Rosenblatt M. Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 1956, 27(3): 832-837.
|
[25] |
Devijver P A, Kittler J. Pattern Recognition: A Statistical Approach. Englewood Cliffs, NJ: Prentice Hall, 1982.
|
[26] |
Masaeli M, Fung G, Dy J G. From transformation-based dimensionality reduction to feature selection. In Proc. the 27th ICML, June 2010, pp.751-758.
|
[27] |
Kirk D B, Hwu W W. Programming Massively Parallel Processors: A Hands-on Approach (Applications of GPU Computing Series). Morgan Kaufmann Publishers, 2010.
|
[28] |
Lv Q, Josephson W,Wang Z et al. Multi-probe LSH: Effcient indexing for high-dimensional similarity search. In Proc. the 33rd VLDB, Sept. 2007, pp.950-961.
|
[29] |
Arya S, Mount D M, Netanyahu N S et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM, 1998, 45(6): 891-923.
|
[30] |
Garcia V, Debreuve E, Barlaud M. Fast k nearest neighbor search using GPU. In Proc. Workshop on Computer Vision and Pattern Recognition, June 2008.
|
[31] |
Azmandian F, Dy J G, Aslam J A et al. Local kernel density ratio-based feature selection for outlier detection. In Proc. the 4th Asian Conf. Machine Learning, Nov. 2012, pp.49-64.
|
[32] |
Güvenir H A, Acar B, Demiröz G et al. A supervised machine learning algorithm for arrhythmia analysis. In Proc. Computers in Cardiology Conference, September 1998, pp.433-436.
|
[1] | Jian Chen, Kai-Qi Zhang, Tian Ren, Zhen-Qing Wu, Hong Gao. GAM: A GPU-Accelerated Algorithm for MaxRS Queries in Road Networks[J]. Journal of Computer Science and Technology, 2022, 37(5): 1005-1025. DOI: 10.1007/s11390-022-2330-3 |
[2] | Zhi-Guang Chen, Yu-Bo Liu, Yong-Feng Wang, Yu-Tong Lu. A GPU-Accelerated In-Memory Metadata Management Scheme for Large-Scale Parallel File Systems[J]. Journal of Computer Science and Technology, 2021, 36(1): 44-55. DOI: 10.1007/s11390-020-0783-9 |
[3] | Sunghun Jo, Yuna Jeong, Sungkil Lee. GPU-Driven Scalable Parser for OBJ Models[J]. Journal of Computer Science and Technology, 2018, 33(2): 417-428. DOI: 10.1007/s11390-018-1827-2 |
[4] | Jing Li, Lei Liu, Yuan Wu, Xiang-Hua Liu, Yi Gao, Xiao-Bing Feng, Cheng-Yong Wu. Pragma Directed Shared Memory Centric Optimizations on GPUs[J]. Journal of Computer Science and Technology, 2016, 31(2): 235-252. DOI: 10.1007/s11390-016-1624-8 |
[5] | Peng Du, Jie-Yi Zhao, Wan-Bin Pan, Yi-Gang Wang. GPU Accelerated Real-time Collision Handling in Virtual Disassembly[J]. Journal of Computer Science and Technology, 2015, 30(3): 511-518. DOI: 10.1007/s11390-015-1541-2 |
[6] | Yun-Cen Huang, Jie-Qing Feng, Matthias NieBner, Yuan-Min Cui, Baoguang Yang. Feature-Adaptive Rendering of Loop Subdivision Surfaces on Modern GPUs[J]. Journal of Computer Science and Technology, 2014, 29(6): 1014-1025. DOI: 10.1007/s11390-014-1486-x |
[7] | Yan Li, Yun-Quan Zhang, Yi-Qun Liu, Guo-Ping Long, Hai-Peng Jia. MPFFT: An Auto-Tuning FFT Library for OpenCL GPUs[J]. Journal of Computer Science and Technology, 2013, 28(1): 90-105. DOI: 10.1007/s11390-013-1314-8 |
[8] | Jie-Yi Zhao, Min Tang, Ruo-Feng Tong. Connectivity-Based Segmentation for GPU-Accelerated Mesh Decompression[J]. Journal of Computer Science and Technology, 2012, 27(6): 1110-1118. DOI: 10.1007/s11390-012-1289-x |
[9] | Chun-Tao Hong, De-Hao Chen, Yu-Bei Chen, Wen-Guang Chen, Wei-Min Zheng, Hai-Bo Lin. Providing Source Code Level Portability Between CPU and GPU with MapCG[J]. Journal of Computer Science and Technology, 2012, 27(1): 42-56. DOI: 10.1007/s11390-012-1205-4 |
[10] | Feng Wang , Can-Qun Yang, Yun-Fei Du, Juan Chen, Hui-Zhan Yi, Wei-Xia Xu. Optimizing Linpack Benchmark on GPU-Accelerated Petascale Supercomputer[J]. Journal of Computer Science and Technology, 2011, 26(5): 854-865. DOI: 10.1007/s11390-011-0184-1 |