We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Min Zhang, Wei Zeng, Ren Guo, Feng Luo, Xianfeng David Gu. Survey on Discrete Surface Ricci Flow[J]. Journal of Computer Science and Technology, 2015, 30(3): 598-613. DOI: 10.1007/s11390-015-1548-8
Citation: Min Zhang, Wei Zeng, Ren Guo, Feng Luo, Xianfeng David Gu. Survey on Discrete Surface Ricci Flow[J]. Journal of Computer Science and Technology, 2015, 30(3): 598-613. DOI: 10.1007/s11390-015-1548-8

Survey on Discrete Surface Ricci Flow

More Information
  • Author Bio:

    Min Zhang received her B.S. and Ph.D. degrees in mathematics from Zhejiang University, Hangzhou. She got her second Ph.D. degree in the Department of Computer Science of the State University of New York at Stony Brook, USA, in 2014. Her research interests include computer graphics, visualization, and geometric modeling.

  • Received Date: April 09, 2014
  • Revised Date: November 11, 2014
  • Published Date: May 04, 2015
  • Ricci flow deforms the Riemannian metric proportional to the curvature, such that thecurvature evolves according to a nonlinear heat diffusion process, and becomes constant eventually. Ricci flow is a powerful computational tool to design Riemannian metrics by prescribed curvatures.Surface Ricci flow has been generalized to the discrete setting. This work surveys the theory of discrete surface Ricci flow, its computational algorithms, and applications for surface registration and shape analysis.
  • [1]
    Zeng W, Gu X. Ricci Flow for Shape Analysis and Surface Registration. Springer New York, 2013.
    [2]
    Thurston W. The Geometry and Topology of 3-Manifolds. Princeton University Press, 1997.
    [3]
    Andreev E M. Complex polyhedra in Loba?hevskiî spaces. Mat. Sb. (N.S.), 1970, 81(123): 445–478. (in Russian)
    [4]
    Andreev E M. Convex polyhedra of finite volume in Loba?hevskiî space. Mat. Sb. (N.S.), 1970, 83(125): 256– 260. (in Russian)
    [5]
    Koebe P. Kontaktprobleme der konformen abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math. Phys. Kl., 1936, 88: 141–164.
    [6]
    Rodin B, Sullivan D. The convergence of circle packings to the Riemann mapping. Journal of Differential Geometry, 1987, 26(2): 349–360.
    [7]
    Chow B, Luo F. Combinatorial Ricci flows on surfaces. Journal of Differential Geometry, 2003, 63(1): 97–129.
    [8]
    Marden A, Rodin B. On Thurston's formulation and proof of Andreev's theorem. In Lecture Notes in Math. 1435, Ruscheweyh S, Satt E, Salinas L et al. (eds.), Springer Berlin, 1990, pp.103–116.
    [9]
    Colin de Verdiére Y. Un principe variationnel pour les empilements de cercles. Invent. Math., 1991, 104: 655–669.
    [10]
    Stephenson K. Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press, 2005.
    [11]
    He Z X, Schramm O. On the convergence of circle packings to the Riemann map. Invent. Math., 1996, 125(2): 285–305.
    [12]
    Bowers P L, Stephenson K. Uniformizing Dessins and Belyi Maps via Circle Packing. Amer. Math. Soc., 2004.
    [13]
    Guo R. Local rigidity of inversive distance circle packing. Trans. Amer. Math. Soc., 2011, 363: 4757–4776.
    [14]
    Luo F. Combinatorial Yamabe flow on surfaces. Contemp. Math., 2004, 6(5): 765–780.
    [15]
    Springborn B, Schröder P, Pinkall U. Conformal equivalence of triangle meshes. ACM Trans. Graph., 2008, 27(3): Article No. 77.
    [16]
    Glickenstein D. A combinatorial Yamabe flow in three dimensions. Topology, 2005, 44(4): 791–808.
    [17]
    Glickenstein D. A maximum principle for combinatorial Yamabe flow. Topology, 2005, 44(4): 809–825.
    [18]
    Glickenstein D. Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds. Journal of Differential Geometry, 2011, 87(2): 201– 238.
    [19]
    Guo R. Combinatorial Yamabe flow on hyperbolic surfaces with boundary. Communications in Contemporary Mathematics, 2011, 13(5): 827–842.
    [20]
    Zhang M, Guo R, Zeng W, Luo F, Yau S T, Gu X. The unified surface Ricci flow. Graphic Models, 2014, 76(5): 321– 339.
    [21]
    Brägger W. Kreispackungen und triangulierugen. Enseign. Math., 1992, 38: 201–217.
    [22]
    Rivin I. Euclidean structures of simplicial surfaces and hyperbolic volume. Ann. Math., 1994, 139: 553–580.
    [23]
    Leibon G. Characterizing the Delaunay decompositions of compact hyperbolic surface. Geom. & Topol., 2002, 6: 361– 391.
    [24]
    Bobenko A I, Springborn B A. Variational principles for circle patterns and Koebe's theorem. Trans. Amer. Math. Soc., 2004, 356(2): 659–689.
    [25]
    Guo R, Luo F. Rigidity of polyhedral surface, II. Geom. & Topol., 2009, 13: 1265–1312.
    [26]
    Springborn B. A variational principle for weighted Delaunay triangulation and hyperideal polyhedra. Journal of Differential Geometry, 2008, 78(2): 333–367.
    [27]
    Luo F. Rigidity of polyhedral surfaces. arXiv:math.GT/0612714, 2006.
    [28]
    Dai J, Gu X, Luo F. Variational Principles for Discrete Surfaces (Advanced Lectures in Mathematics). High Education Press and International Press, 2007.
    [29]
    Chow B, Lu P, Ni L. Hamilton's Ricci Flow (Graduate Studies in Mathematics). American Mathematical Society, 2006.
    [30]
    Schoen R, Yau S T. Lecture on Differential Geometry, Volume 1. International Press Incorporated, Boston, 1994.
    [31]
    Gu X, Yau S T. Computational Conformal Geometry. International Press, 2008.
    [32]
    Hamilton R. Ricci flow on surfaces. Mathematics and General Relativity, Contemporary Mathematics AMS, Providence, RI, 1988, 71: 237–262.
    [33]
    Chow B. The Ricci flow on the 2-sphere. Journal of Differential Geometry, 1991, 33(2): 325–334.
    [34]
    Bobenko A, Pinkall U, Springborn B. Discrete conformal maps and ideal hyperbolic polyhedra. arXiv:1005.2698, 2013.
    [35]
    He Z. Rigidity of infinite disk patterns. Ann. Math., 1999 149(1): 1–33.
    [36]
    Jin M, Kim J, Luo F, Gu X. Discrete surface Ricci flow. IEEE Transactions on Visualization and Computer Graphic, 2008, 14(5): 1030–1043.
    [37]
    Zeng W, Yin X, Zhang M, Luo F, Gu X. Generalized Koebe's method for conformal mapping multiply connected domains. In Proc. SIAM/ACM Joint Conference on Geometric and Physical Modeling, Oct. 2009, pp.89–100.
    [38]
    Hernandez C, Vogiatzis G, Brostow G J, Stenger B, Cipolla R. Non-rigid photometric stereo with colored lights. In Proc. the 11th IEEE International Conference on Computer Vision, Oct. 2007.
    [39]
    Wang Y, Gupta M, Zhang S, Wang S, Gu X, Samaras D, Huang P. High resolution tracking of non-rigid motion of densely sampled 3D data using harmonic maps. International Journal of Computer Vision, 2008, 76(3): 283–300.
    [40]
    Zeng W, Samaras D, Gu X. Ricci flow for 3D shape analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 662–677.
    [41]
    Zeng W, Gu X. Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2011, pp.2457–2464.
    [42]
    Lui L M, Wong T, Zeng W, Gu X, Thompson P, Chan T, Yau S T. Optimization of surface registrations using Beltrami holomorphic flow. Journal of Scientific Computing, 2012, 50(3): 557–585.
    [43]
    Horner M, Ries L, Krapcho M, Neyman N, Aminou R, Howlader N, Altekruse S, Feuer E, Huang L, Mariotto A, Miller B, Lewis D, Eisner M, Stinchcomb D, Edwards B. SEER cancer statistics review, 1975-2006. http://seer.cancer.gov/csr/1975 2006/, Apr. 2015.
    [44]
    Center M, Jemal A, Smith R A, Ward E. Worldwide variations in colorectal cancer. CA: A Cancer Journal for Clinicians, 2009, 59(6): 366–378.
    [45]
    Hong L, Muraki S, Kaufman A, Bartz D, He T. Virtual voyage: Interactive navigation in the human colon. In Proc. the 24th ACM SIGGRAPH, Aug. 1997, pp.27–34.
    [46]
    Johnson C, Dachman A. CT colography: The next colon screening examination. Radiology, 2000, 216(2): 331–341.
    [47]
    Qiu F, Fan Z, Yin X, Kauffman A, Gu X. Colon flattening with discrete Ricci flow. In Proc. International Conference on Medical Image Computing and Computer Assisted Intervention, Sept. 2009.
    [48]
    Zeng W, Marino J, Chaitanya Gurijala K, Gu X, Kaufman A. Supine and prone colon registration using quasiconformal mapping. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1348–1357.
    [49]
    Gu X, Wang Y, Chan T, Thompson P M, Yau S T. Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging, 2004, 23(8): 949–958.
    [50]
    Wang Y, Shi J, Yin X, Gu X, Chan T, Yau S T, Toga A W, Thompson P M. Brain surface conformal parameterization with the Ricci flow. IEEE Transactions on Medical Imaging, 2012, 31(2): 251–264.
    [51]
    Zeng W, Gu X. 3D dynamics analysis in Teichmüller space. In Proc. ICCV Workshops, Nov. 2011, pp. 1610–1617.
    [52]
    Sharon E, Mumford D. 2D-shape analysis using conformal mapping. International Journal of Computer Vision, 2006, 70(1): 55–75.
    [53]
    Lui L M, Zeng W, Chan T F, Yau S T, Gu X. Shape representation of planar objects with arbitrary topologies using conformal geometry. In Proc. the 11th European Conference on Computer Vision, Sept. 2010.

Catalog

    Article views (245) PDF downloads (2543) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return