We use cookies to improve your experience with our site.
Xiao-Dong Meng, Chen-Tao Wu, Min-Yi Guo, Jie Li, Xiao-Yao Liang, Bin Yao, Long Zheng. A Hint Frequency Based Approach to Enhancing the I/O Performance of Multilevel Cache Storage Systems[J]. Journal of Computer Science and Technology, 2017, 32(2): 312-328. DOI: 10.1007/s11390-017-1724-0
Citation: Xiao-Dong Meng, Chen-Tao Wu, Min-Yi Guo, Jie Li, Xiao-Yao Liang, Bin Yao, Long Zheng. A Hint Frequency Based Approach to Enhancing the I/O Performance of Multilevel Cache Storage Systems[J]. Journal of Computer Science and Technology, 2017, 32(2): 312-328. DOI: 10.1007/s11390-017-1724-0

A Hint Frequency Based Approach to Enhancing the I/O Performance of Multilevel Cache Storage Systems

  • With the enormous and increasing user demand, I/O performance is one of the primary considerations to build a data center. Several new technologies in data centers, such as tiered storage, prompt the widespread usage of multilevel cache techniques. In these storage systems, the upper level storage typically serves as a cache for the lower level, which forms a distributed multilevel cache system. However, although many excellent multilevel cache algorithms have been proposed to improve the I/O performance, they still have potential to be enhanced by investigating the history information of hints. To address this challenge, in this paper, we propose a novel hint frequency based approach (HFA), to improve the overall multilevel cache performance of storage systems. The main idea of HFA is using hint frequencies (the total number of demotions/promotions by employing demote/promote hints) to efficiently explore the valuable history information of data blocks among multiple levels. HFA can be applied with several popular multilevel cache algorithms, such as Demote, Promote and Hint-K. Simulation results show that, compared with original multilevel cache algorithms such as Demote, Promote and Hint-K, HFA can improve the I/O performance by up to 20% under different I/O workloads.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return