We use cookies to improve your experience with our site.
Xiang Bai, Zheng Zhang, Hong-Yang Wang, Wei Shen. Directional Edge Boxes: Exploiting Inner Normal Direction Cues for Effective Object Proposal Generation[J]. Journal of Computer Science and Technology, 2017, 32(4): 701-713. DOI: 10.1007/s11390-017-1752-9
Citation: Xiang Bai, Zheng Zhang, Hong-Yang Wang, Wei Shen. Directional Edge Boxes: Exploiting Inner Normal Direction Cues for Effective Object Proposal Generation[J]. Journal of Computer Science and Technology, 2017, 32(4): 701-713. DOI: 10.1007/s11390-017-1752-9

Directional Edge Boxes: Exploiting Inner Normal Direction Cues for Effective Object Proposal Generation

  • Edges are important cues for localizing object proposals. The recent progresses to this problem are mostly driven by defining effective objectness measures based on edge cues. In this paper, we develop a new representation named directional edges on which each edge pixel is assigned with a direction toward object center, through learning a direction prediction model with convolutional neural networks in a holistic manner. Based on directional edges, two new objectness measures are designed for ranking object proposals. Experiments show that the proposed method achieves 97.1% object recall at an overlap threshold of 0.5 and 81.9% object recall at an overlap threshold of 0.7 at 1 000 proposals on the PASCAL VOC 2007 test dataset, which is superior to the state-of-the-art methods.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return