-
Abstract
Analyzing the syntactic structure of natural languages by parsing is an important task in artificial intelligence. Due to the complexity of natural languages, individual parsers tend to make different yet complementary errors. We propose a neural network based approach to combine parses from different parsers to yield a more accurate parse than individual ones. Unlike conventional approaches, our method directly transforms linearized candidate parses into the ground-truth parse. Experiments on the Penn English Treebank show that the proposed method improves over a state-of-the-art parser combination approach significantly.
-
-