SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Zai-Liang Chen, Peng Peng, Bei-Ji Zou, Hai-Lan Shen, Hao Wei, Rong-Chang Zhao. Automatic Anterior Lamina Cribrosa Surface Depth Measurement Based on Active Contour and Energy Constraint[J]. Journal of Computer Science and Technology, 2017, 32(6): 1214-1221. DOI: 10.1007/s11390-017-1795-y |
[1] |
Cook C, Foster P. Epidemiology of glaucoma:What's new? Canadian Journal of Ophthalmology, 2012, 47(3):223-226.
|
[2] |
Minckler D S, Bunt A H, Johanson G W. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Investigative Ophthalmology & Visual Science, 1977, 16(5):426-441.
|
[3] |
Quigley H A, Addicks E M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Archives of Ophthalmology, 1981, 99(1):137-143.
|
[4] |
Yan D B, Coloma F M, Metheetrairut A, Trope G E, Heathcote J G, Ethier C R. Deformation of the lamina cribrosa by elevated intraocular pressure. British Journal of Ophthalmology, 1994, 78(8):643-648.
|
[5] |
Jonas J B, Wang N, Yang D. Translamina cribrosa pressure difference as potential element in the pathogenesis of glaucomatous optic neuropathy. The Asia-Pacific Journal of Ophthalmology, 2016, 5(1):5-10.
|
[6] |
Reis A S C, O'Leary N, Stanfield M J, Shuba L M, Nicolela M T, Chauhan B C. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Investigative Ophthalmology & Visual Science, 2012, 53(9):5819-5826.
|
[7] |
Seo J H, Kim T W, Weinreb R N. Lamina cribrosa depth in healthy eyes. Investigative Ophthalmology & Visual Science, 2014, 55(3):1241-1251.
|
[8] |
Spaide R F, Koizumi H, Pozzoni M C. Enhanced depth imaging spectral-domain optical coherence tomography. American Journal of Ophthalmology, 2008, 146(4):496-500.
|
[9] |
Abe R Y, Gracitelli C P B, Diniz-Filho A, Tatham A J, Medeiros F A. Lamina cribrosa in glaucoma:Diagnosis and monitoring. Current Ophthalmology Reports, 2015, 3(2):74-84.
|
[10] |
Furlanetto R L, Park S C, Damle U J, Sieminski S F, Kung Y, Siegal N, Ritch R. Posterior displacement of the lamina cribrosa in glaucoma:In vivo interindividual and intereye comparisons. Investigative Ophthalmology & Visual Science, 2013, 54(7):4836-4842.
|
[11] |
Miri M S, Robles V A, Abrmoff M D, Kwon Y H, Garvin M K. Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve headcentered SD-OCT volumes. Computerized Medical Imaging and Graphics, 2017, 55:87-94.
|
[12] |
Shah A, Wang J K, Garvin M K, Sonka M, Wu X. Automated surface segmentation of internal limiting membrane in spectral-domain optical coherence tomography volumes with a deep cup using a 3-D range expansion approach. In Proc. the 11th IEEE International Symposium on Biomedical Imaging (ISBI), Apr. 29-May 2, 2014, pp.1405-1408.
|
[13] |
Lu S, Cheung C Y L, Liu J, Lim J H, Leung C K S, Wong T Y. Automated layer segmentation of optical coherence tomography images. IEEE Transactions on Biomedical Engineering, 2010, 57(10):2605-2608.
|
[14] |
Belghith A, Bowd C, Medeiros F A, Weinreb R N, Zangwill L M. Automated segmentation of anterior lamina cribrosa surface:How the lamina cribrosa responds to intraocular pressure change in glaucoma eyes? In Proc. the 12th IEEE International Symposium on Biomedical Imaging (ISBI), Apr. 2015, pp.222-225.
|
[15] |
Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2):266-277.
|
[16] |
Girard M J, Strouthidis N G, Ethier C R, Mari J M. Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Investigative Ophthalmology & Visual Science, 2011, 52(10):7738-7748.
|
[17] |
Foin N, Mari J M, Davies J E, Di Mario C, Girard M J. Imaging of coronary artery plaques using contrast-enhanced optical coherence tomography. European Heart Journal-Cardiovascular Imaging, 2013, 14(1):85.
|
[18] |
Zhang Q, Wang Y X, Li J J et al. Optical coherence tomography of prelaminar tissue and its relationship with oculopathy. International Review of Ophthalmology, 2017, 41(1):8-13. (in Chinese)
|
[19] |
Hussain M A, Bhuiyan A, Ramamohanarao K. Disc segmentation and BMO-MRW measurement from SD-OCT image using graph search and tracing of three bench mark reference layers of retina. In Proc. IEEE International Conference on Image Processing (ICIP), Sept. 2015, pp.4087-4091.
|
[20] |
Chang J, Fisher J W. Efficient MCMC sampling with implicit shape representations. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2011, pp.2081-2088.
|
[21] |
Ren R, Yang H, Gardiner S K, Fortune B, Hardin C, Demirel S, Burgoyne C F. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland progression project. Investigative Ophthalmology & Visual Science, 2014, 55(3):1531-1539.
|
[22] |
Cheung C Y, Chen D, Wong T Y et al. Determinants of quantitative optic nerve measurements using spectral domain optical coherence tomography in a population-based sample of non-glaucomatous subjects. Investigative Ophthalmology & Visual Science, 2011, 52(13):9629-9635.
|
[23] |
Patel N B, Lim M, Gajjar A, Evans K B, Harwerth R S. Age-associated changes in the retinal nerve fiber layer and optic nerve head. Investigative Ophthalmology & Visual Science, 2014, 55(8):5134-5143.
|
[1] | Kirk W. Cameron. Adventures Beyond Amdahl's Law: How Power-Performance Measurement and Modeling at Scale Drive Server and Supercomputer Design[J]. Journal of Computer Science and Technology, 2023, 38(1): 80-86. DOI: 10.1007/s11390-022-2950-7 |
[2] | Yi Wang, Yi-Xue Liu, Shun-Jia Zhu, Xiao-Feng Gao, Chen Tian. Approximation Designs for Energy Harvesting Relay Deployment in Wireless Sensor Networks[J]. Journal of Computer Science and Technology, 2022, 37(4): 779-796. DOI: 10.1007/s11390-022-1964-5 |
[3] | Yang Li, Zhi-Ping Cai, Hong Xu. LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks[J]. Journal of Computer Science and Technology, 2018, 33(2): 277-285. DOI: 10.1007/s11390-018-1819-2 |
[4] | Jing Jiang, Zi-Fei Shan, Xiao Wang, Li Zhang, Ya-Fei Dai. Understanding Sybil Groups in the Wild[J]. Journal of Computer Science and Technology, 2015, 30(6): 1344-1357. DOI: 10.1007/s11390-015-1602-6 |
[5] | Yan-Chao Zhao, Jie Wu, Wen-Zhong Li, Sang-Lu Lu. Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement[J]. Journal of Computer Science and Technology, 2015, 30(6): 1290-1305. DOI: 10.1007/s11390-015-1599-x |
[6] | Yu Jiang, Bin-Xing Fang, Ming-Zeng Hu, Xiang Cui. Techniques for Determining the Geographic Location ofIP Addresses in ISP Topology Measurement[J]. Journal of Computer Science and Technology, 2005, 20(5): 689-701. |
[7] | Zhen-Qiang Chen, Bao-Wen Xu, Yu-Ming Zhou. Measuring Class Cohesion Based on Dependence Analysis[J]. Journal of Computer Science and Technology, 2004, 19(6). |
[8] | Guang-Hui Wang, Zhan-Yi Hu, Fu-Chao Wu. Single View Based Measurement on Space Planes[J]. Journal of Computer Science and Technology, 2004, 19(3). |
[9] | HAO Jie, LI Xing. Word Spotting Based on a posterior Measure of Keyword Confidence[J]. Journal of Computer Science and Technology, 2002, 17(4). |
[10] | Wang Jianchao, Wei Daozheng. Reconvergent-Fanout-Oriented Testability Measure[J]. Journal of Computer Science and Technology, 1988, 3(1): 16-28. |
1. | Tidiane Sylla, Leo Mendiboure, Mohamed Aymen Chalouf, et al. User-Centric IoT Service Placement in Shared Edge Computing Infrastructures. SN Computer Science, 2025, 6(5) DOI:10.1007/s42979-025-04065-3 |
2. | Syed Aizaz Ul Haq, Muqaddas Imran, Nadir Shah, et al. SDN-Based Edge Computing in Vehicular Communication Networks: A Survey of Existing Approaches. IEEE Access, 2025, 13: 74252. DOI:10.1109/ACCESS.2025.3561083 |
3. | Rodrigo Rosmaninho, Duarte Raposo, Pedro Rito, et al. Edge-Cloud Continuum Orchestration of Critical Services: A Smart-City Approach. IEEE Transactions on Services Computing, 2025, 18(3): 1381. DOI:10.1109/TSC.2025.3568251 |
4. | Ossama Nazih, Nabil Benamar, Hanane Lamaazi, et al. Toward Secure and Trustworthy Vehicular Fog Computing: A Survey. IEEE Access, 2024, 12: 35154. DOI:10.1109/ACCESS.2024.3371488 |
5. | Francesco Tusa, Stuart Clayman, Alina Buzachis, et al. Microservices and serverless functions—lifecycle, performance, and resource utilisation of edge based real-time IoT analytics. Future Generation Computer Systems, 2024, 155: 204. DOI:10.1016/j.future.2024.02.006 |
6. | Marieh Talebkhah, Aduwati Sali, Vahid Khodamoradi, et al. Task offloading for edge-IoV networks in the industry 4.0 era and beyond: A high-level view. Engineering Science and Technology, an International Journal, 2024, 54: 101699. DOI:10.1016/j.jestch.2024.101699 |
7. | Mayssa Dardour, Mohamed Mosbah, Toufik Ahmed. Improving Emergency Response: An In-Depth Analysis of an ITS-G5 Messaging Strategy for Bus Blockage Emergencies at Level Crossings. Journal of Network and Systems Management, 2024, 32(2) DOI:10.1007/s10922-024-09811-1 |
8. | Juan Zhang, Yulei Wu, Geyong Min, et al. Neural Network-Based Game Theory for Scalable Offloading in Vehicular Edge Computing: A Transfer Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7431. DOI:10.1109/TITS.2023.3348074 |
9. | Muhammad Ali Naeem, Sushank Chaudhary, Yahui Meng. Road to Efficiency: V2V Enabled Intelligent Transportation System. Electronics, 2024, 13(13): 2673. DOI:10.3390/electronics13132673 |
10. | Marieh Talebkhah, Aduwati Sali, Meisam Gordan, et al. Comprehensive Review on Development of Smart Cities Using Industry 4.0 Technologies. IEEE Access, 2023, 11: 91981. DOI:10.1109/ACCESS.2023.3302262 |
11. | Kobra Behravan, Nazbanoo Farzaneh, Mohsen Jahanshahi, et al. A comprehensive survey on using fog computing in vehicular networks. Vehicular Communications, 2023, 42: 100604. DOI:10.1016/j.vehcom.2023.100604 |
12. | Fengchun Liu, Meng Li, Xiaoxiao Liu, et al. A Review of Federated Meta-Learning and Its Application in Cyberspace Security. Electronics, 2023, 12(15): 3295. DOI:10.3390/electronics12153295 |
13. | Romain Dulout, Leo Mendiboure, Yannis Pousset, et al. Non-Orthogonal Multiple Access for Offloading in Multi-Access Edge Computing: A Survey. IEEE Access, 2023, 11: 118983. DOI:10.1109/ACCESS.2023.3326846 |
14. | Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. A QoS-Aware Fuzzy-Based System for Assessment of Edge Computing Resources in SDN-VANETs. International Journal of Mobile Computing and Multimedia Communications, 2022, 12(4): 1. DOI:10.4018/IJMCMC.289161 |
15. | Aisha Muhammad A. Hamdi, Farookh Khadeer Hussain, Omar K. Hussain. Task offloading in vehicular fog computing: State-of-the-art and open issues. Future Generation Computer Systems, 2022, 133: 201. DOI:10.1016/j.future.2022.03.019 |
16. | Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. An Intelligent Approach for Cloud-Fog-Edge Computing SDN-VANETs Based on Fuzzy Logic: Effect of Different Parameters on Coordination and Management of Resources. Sensors, 2022, 22(3): 878. DOI:10.3390/s22030878 |
17. | Lina Liu. The artistic design of user interaction experience for mobile systems based on context-awareness and machine learning. Neural Computing and Applications, 2022, 34(9): 6721. DOI:10.1007/s00521-021-06160-x |
18. | Tidiane Sylla, Leo Mendiboure, Sassi Maaloul, et al. Multi-Connectivity for 5G Networks and Beyond: A Survey. Sensors, 2022, 22(19): 7591. DOI:10.3390/s22197591 |
19. | Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. FSAQoS. International Journal of Distributed Systems and Technologies, 2022, 13(1): 1. DOI:10.4018/IJDST.300338 |
20. | M. Almutiq, L. Sellami, B. Alaya. Dynamic Vehicular Clustering Enhancing Video on Demand Services Over Vehicular Ad-hoc Networks. Computers, Materials & Continua, 2022, 72(2): 3493. DOI:10.32604/cmc.2022.024571 |
21. | Bo Li, Feilong Chen, Ziyi Peng, et al. Mobility-aware dynamic offloading strategy for C-V2X under multi-access edge computing. Physical Communication, 2021, 49: 101446. DOI:10.1016/j.phycom.2021.101446 |
22. | Ali Hassan Sodhro, Joel J. P. C. Rodrigues, Sandeep Pirbhulal, et al. Link Optimization in Software Defined IoV Driven Autonomous Transportation System. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3511. DOI:10.1109/TITS.2020.2973878 |
23. | Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, et al. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions. Computer Networks, 2021, 195: 108177. DOI:10.1016/j.comnet.2021.108177 |
24. | Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, et al. Lane Detection: A Survey with New Results. Journal of Computer Science and Technology, 2020, 35(3): 493. DOI:10.1007/s11390-020-0476-4 |
25. | Jakob Mass, Satish Narayana Srirama, Chii Chang. STEP-ONE: Simulated testbed for Edge-Fog processes based on the Opportunistic Network Environment simulator. Journal of Systems and Software, 2020, 166: 110587. DOI:10.1016/j.jss.2020.110587 |
26. | Leo Mendiboure, Mohamed Aymen Chalouf, Francine Krief. A SDN-Based Pub/Sub Middleware for Geographic Content Dissemination in Internet of Vehicles. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), DOI:10.1109/VTCFall.2019.8891151 |
27. | El-Hacen Diallo, Omar Dib, Khaldoun Al Agha. The journey of Blockchain inclusion in Vehicular Networks: A Taxonomy. 2021 Third International Conference on Blockchain Computing and Applications (BCCA), DOI:10.1109/BCCA53669.2021.9657050 |
28. | Léo Mendiboure, Mohamed Aymen Chalouf, Francine Krief. Intelligent Network Management and Control. DOI:10.1002/9781119817840.ch8 |
29. | Francine Krief, Hasnaâ Aniss, Marion Berbineau, et al. Intelligent Network Management and Control. DOI:10.1002/9781119817840.ch10 |
30. | Jiapeng Li, Hua Huang. Research Study on Edge Computing. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud), DOI:10.1109/SmartCloud52277.2021.00012 |
31. | Weimin Gan, Juan Li, Yan Guo. Research on ant colony optimization network access algorithm based on model of vehicle fog calculation. 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), DOI:10.1109/ICBASE53849.2021.00018 |
32. | Sabri Khamari, Toufik Ahmed, Mohamed Mosbah. Edge-based Safety Intersection Assistance Architecture for Connected Vehicles. 2021 International Wireless Communications and Mobile Computing (IWCMC), DOI:10.1109/IWCMC51323.2021.9498980 |
33. | Radheshyam Singh, Mohamed Aymen Chalouf, Leo Mendiboure, et al. Towards an SDN-based Reconfigurable Edge Architecture for Railway Environment. 2024 7th International Conference on Advanced Communication Technologies and Networking (CommNet), DOI:10.1109/CommNet63022.2024.10793389 |
34. | Tidiane Sylla, Leo Mendiboure, Marion Berbineau, et al. Implementing Edge Computing Architectures for Railway Applications: An example Using the Emu5GNet Platform. 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), DOI:10.1109/VTC2023-Spring57618.2023.10200145 |
35. | Bechir Alaya, Lamaa Sellami, Mutiq Al Mutiq. Advances in Computational Collective Intelligence. Communications in Computer and Information Science, DOI:10.1007/978-3-031-16210-7_34 |
36. | Tidiane SYLLA, Mohamed Aymen CHALOUF, Léo MENDIBOURE, et al. Cooperative Intelligent Transport Systems. DOI:10.1002/9781394325849.ch12 |
37. | Catherine Nayer Tadros, Mohamed Gad, Bassem Mahmoud Mokhtar, et al. Vehicular Edge of Thing Computing for Sustainable Smart IoT Services. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), DOI:10.1109/WF-IoT51360.2021.9595826 |