We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Zai-Liang Chen, Peng Peng, Bei-Ji Zou, Hai-Lan Shen, Hao Wei, Rong-Chang Zhao. Automatic Anterior Lamina Cribrosa Surface Depth Measurement Based on Active Contour and Energy Constraint[J]. Journal of Computer Science and Technology, 2017, 32(6): 1214-1221. DOI: 10.1007/s11390-017-1795-y
Citation: Zai-Liang Chen, Peng Peng, Bei-Ji Zou, Hai-Lan Shen, Hao Wei, Rong-Chang Zhao. Automatic Anterior Lamina Cribrosa Surface Depth Measurement Based on Active Contour and Energy Constraint[J]. Journal of Computer Science and Technology, 2017, 32(6): 1214-1221. DOI: 10.1007/s11390-017-1795-y

Automatic Anterior Lamina Cribrosa Surface Depth Measurement Based on Active Contour and Energy Constraint

Funds: This work was supported by the National Natural Science Foundation of China under Grant Nos. 61672542 and 61573380.
More Information
  • Author Bio:

    Zai-Liang Chen received his Ph.D.degree in computer science from Central South University,Changsha,in 2012.He is currently an associate professor with Central South University,Changsha,and the associate director of the Center for Ophthalmic Imaging Research,Central South University,Changsha.

  • Corresponding author:

    Hai-Lan Shen E-mail: hn shl@126.com

  • Received Date: June 19, 2017
  • Revised Date: September 25, 2017
  • Published Date: November 04, 2017
  • The lamina cribrosa is affected by intraocular pressure, which is the major risk of glaucoma. However, the capability to evaluate the lamina cribrosa in vivo has been limited until recently due to poor image quality and the posterior laminar displacement of glaucomatous eyes. In this study, we propose an automatic method to measure the anterior lamina cribrosa surface depth (ALCSD), including a method for detecting Bruch's membrane opening (BMO) based on k-means and region-based active contour. An anterior lamina cribrosa surface segmentation method based on energy constraint is also proposed. In BMO detection, we initialize the Chan-Vese active contour model by using the segmentation map of the k-means cluster. In the segmentation of anterior lamina cribrosa surface, we utilize the energy function in each A-scan to establish a set of candidates. The points in the set that fail to meet the constraints are removed. Finally, we use the B-spline fitting method to obtain the results. The proposed automatic method can model the posterior laminar displacement by measuring the ALCSD. This method achieves a mean error of 45.34 μm in BMO detection. The mean errors of the anterior lamina cribrosa surface are 94.1% within five pixels and 76.1% within three pixels.
  • [1]
    Cook C, Foster P. Epidemiology of glaucoma:What's new? Canadian Journal of Ophthalmology, 2012, 47(3):223-226.
    [2]
    Minckler D S, Bunt A H, Johanson G W. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Investigative Ophthalmology & Visual Science, 1977, 16(5):426-441.
    [3]
    Quigley H A, Addicks E M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Archives of Ophthalmology, 1981, 99(1):137-143.
    [4]
    Yan D B, Coloma F M, Metheetrairut A, Trope G E, Heathcote J G, Ethier C R. Deformation of the lamina cribrosa by elevated intraocular pressure. British Journal of Ophthalmology, 1994, 78(8):643-648.
    [5]
    Jonas J B, Wang N, Yang D. Translamina cribrosa pressure difference as potential element in the pathogenesis of glaucomatous optic neuropathy. The Asia-Pacific Journal of Ophthalmology, 2016, 5(1):5-10.
    [6]
    Reis A S C, O'Leary N, Stanfield M J, Shuba L M, Nicolela M T, Chauhan B C. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Investigative Ophthalmology & Visual Science, 2012, 53(9):5819-5826.
    [7]
    Seo J H, Kim T W, Weinreb R N. Lamina cribrosa depth in healthy eyes. Investigative Ophthalmology & Visual Science, 2014, 55(3):1241-1251.
    [8]
    Spaide R F, Koizumi H, Pozzoni M C. Enhanced depth imaging spectral-domain optical coherence tomography. American Journal of Ophthalmology, 2008, 146(4):496-500.
    [9]
    Abe R Y, Gracitelli C P B, Diniz-Filho A, Tatham A J, Medeiros F A. Lamina cribrosa in glaucoma:Diagnosis and monitoring. Current Ophthalmology Reports, 2015, 3(2):74-84.
    [10]
    Furlanetto R L, Park S C, Damle U J, Sieminski S F, Kung Y, Siegal N, Ritch R. Posterior displacement of the lamina cribrosa in glaucoma:In vivo interindividual and intereye comparisons. Investigative Ophthalmology & Visual Science, 2013, 54(7):4836-4842.
    [11]
    Miri M S, Robles V A, Abrmoff M D, Kwon Y H, Garvin M K. Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve headcentered SD-OCT volumes. Computerized Medical Imaging and Graphics, 2017, 55:87-94.
    [12]
    Shah A, Wang J K, Garvin M K, Sonka M, Wu X. Automated surface segmentation of internal limiting membrane in spectral-domain optical coherence tomography volumes with a deep cup using a 3-D range expansion approach. In Proc. the 11th IEEE International Symposium on Biomedical Imaging (ISBI), Apr. 29-May 2, 2014, pp.1405-1408.
    [13]
    Lu S, Cheung C Y L, Liu J, Lim J H, Leung C K S, Wong T Y. Automated layer segmentation of optical coherence tomography images. IEEE Transactions on Biomedical Engineering, 2010, 57(10):2605-2608.
    [14]
    Belghith A, Bowd C, Medeiros F A, Weinreb R N, Zangwill L M. Automated segmentation of anterior lamina cribrosa surface:How the lamina cribrosa responds to intraocular pressure change in glaucoma eyes? In Proc. the 12th IEEE International Symposium on Biomedical Imaging (ISBI), Apr. 2015, pp.222-225.
    [15]
    Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2):266-277.
    [16]
    Girard M J, Strouthidis N G, Ethier C R, Mari J M. Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Investigative Ophthalmology & Visual Science, 2011, 52(10):7738-7748.
    [17]
    Foin N, Mari J M, Davies J E, Di Mario C, Girard M J. Imaging of coronary artery plaques using contrast-enhanced optical coherence tomography. European Heart Journal-Cardiovascular Imaging, 2013, 14(1):85.
    [18]
    Zhang Q, Wang Y X, Li J J et al. Optical coherence tomography of prelaminar tissue and its relationship with oculopathy. International Review of Ophthalmology, 2017, 41(1):8-13. (in Chinese)
    [19]
    Hussain M A, Bhuiyan A, Ramamohanarao K. Disc segmentation and BMO-MRW measurement from SD-OCT image using graph search and tracing of three bench mark reference layers of retina. In Proc. IEEE International Conference on Image Processing (ICIP), Sept. 2015, pp.4087-4091.
    [20]
    Chang J, Fisher J W. Efficient MCMC sampling with implicit shape representations. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2011, pp.2081-2088.
    [21]
    Ren R, Yang H, Gardiner S K, Fortune B, Hardin C, Demirel S, Burgoyne C F. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland progression project. Investigative Ophthalmology & Visual Science, 2014, 55(3):1531-1539.
    [22]
    Cheung C Y, Chen D, Wong T Y et al. Determinants of quantitative optic nerve measurements using spectral domain optical coherence tomography in a population-based sample of non-glaucomatous subjects. Investigative Ophthalmology & Visual Science, 2011, 52(13):9629-9635.
    [23]
    Patel N B, Lim M, Gajjar A, Evans K B, Harwerth R S. Age-associated changes in the retinal nerve fiber layer and optic nerve head. Investigative Ophthalmology & Visual Science, 2014, 55(8):5134-5143.
  • Related Articles

    [1]Kirk W. Cameron. Adventures Beyond Amdahl's Law: How Power-Performance Measurement and Modeling at Scale Drive Server and Supercomputer Design[J]. Journal of Computer Science and Technology, 2023, 38(1): 80-86. DOI: 10.1007/s11390-022-2950-7
    [2]Yi Wang, Yi-Xue Liu, Shun-Jia Zhu, Xiao-Feng Gao, Chen Tian. Approximation Designs for Energy Harvesting Relay Deployment in Wireless Sensor Networks[J]. Journal of Computer Science and Technology, 2022, 37(4): 779-796. DOI: 10.1007/s11390-022-1964-5
    [3]Yang Li, Zhi-Ping Cai, Hong Xu. LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks[J]. Journal of Computer Science and Technology, 2018, 33(2): 277-285. DOI: 10.1007/s11390-018-1819-2
    [4]Jing Jiang, Zi-Fei Shan, Xiao Wang, Li Zhang, Ya-Fei Dai. Understanding Sybil Groups in the Wild[J]. Journal of Computer Science and Technology, 2015, 30(6): 1344-1357. DOI: 10.1007/s11390-015-1602-6
    [5]Yan-Chao Zhao, Jie Wu, Wen-Zhong Li, Sang-Lu Lu. Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement[J]. Journal of Computer Science and Technology, 2015, 30(6): 1290-1305. DOI: 10.1007/s11390-015-1599-x
    [6]Yu Jiang, Bin-Xing Fang, Ming-Zeng Hu, Xiang Cui. Techniques for Determining the Geographic Location ofIP Addresses in ISP Topology Measurement[J]. Journal of Computer Science and Technology, 2005, 20(5): 689-701.
    [7]Zhen-Qiang Chen, Bao-Wen Xu, Yu-Ming Zhou. Measuring Class Cohesion Based on Dependence Analysis[J]. Journal of Computer Science and Technology, 2004, 19(6).
    [8]Guang-Hui Wang, Zhan-Yi Hu, Fu-Chao Wu. Single View Based Measurement on Space Planes[J]. Journal of Computer Science and Technology, 2004, 19(3).
    [9]HAO Jie, LI Xing. Word Spotting Based on a posterior Measure of Keyword Confidence[J]. Journal of Computer Science and Technology, 2002, 17(4).
    [10]Wang Jianchao, Wei Daozheng. Reconvergent-Fanout-Oriented Testability Measure[J]. Journal of Computer Science and Technology, 1988, 3(1): 16-28.
  • Cited by

    Periodical cited type(37)

    1. Tidiane Sylla, Leo Mendiboure, Mohamed Aymen Chalouf, et al. User-Centric IoT Service Placement in Shared Edge Computing Infrastructures. SN Computer Science, 2025, 6(5) DOI:10.1007/s42979-025-04065-3
    2. Syed Aizaz Ul Haq, Muqaddas Imran, Nadir Shah, et al. SDN-Based Edge Computing in Vehicular Communication Networks: A Survey of Existing Approaches. IEEE Access, 2025, 13: 74252. DOI:10.1109/ACCESS.2025.3561083
    3. Rodrigo Rosmaninho, Duarte Raposo, Pedro Rito, et al. Edge-Cloud Continuum Orchestration of Critical Services: A Smart-City Approach. IEEE Transactions on Services Computing, 2025, 18(3): 1381. DOI:10.1109/TSC.2025.3568251
    4. Ossama Nazih, Nabil Benamar, Hanane Lamaazi, et al. Toward Secure and Trustworthy Vehicular Fog Computing: A Survey. IEEE Access, 2024, 12: 35154. DOI:10.1109/ACCESS.2024.3371488
    5. Francesco Tusa, Stuart Clayman, Alina Buzachis, et al. Microservices and serverless functions—lifecycle, performance, and resource utilisation of edge based real-time IoT analytics. Future Generation Computer Systems, 2024, 155: 204. DOI:10.1016/j.future.2024.02.006
    6. Marieh Talebkhah, Aduwati Sali, Vahid Khodamoradi, et al. Task offloading for edge-IoV networks in the industry 4.0 era and beyond: A high-level view. Engineering Science and Technology, an International Journal, 2024, 54: 101699. DOI:10.1016/j.jestch.2024.101699
    7. Mayssa Dardour, Mohamed Mosbah, Toufik Ahmed. Improving Emergency Response: An In-Depth Analysis of an ITS-G5 Messaging Strategy for Bus Blockage Emergencies at Level Crossings. Journal of Network and Systems Management, 2024, 32(2) DOI:10.1007/s10922-024-09811-1
    8. Juan Zhang, Yulei Wu, Geyong Min, et al. Neural Network-Based Game Theory for Scalable Offloading in Vehicular Edge Computing: A Transfer Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7431. DOI:10.1109/TITS.2023.3348074
    9. Muhammad Ali Naeem, Sushank Chaudhary, Yahui Meng. Road to Efficiency: V2V Enabled Intelligent Transportation System. Electronics, 2024, 13(13): 2673. DOI:10.3390/electronics13132673
    10. Marieh Talebkhah, Aduwati Sali, Meisam Gordan, et al. Comprehensive Review on Development of Smart Cities Using Industry 4.0 Technologies. IEEE Access, 2023, 11: 91981. DOI:10.1109/ACCESS.2023.3302262
    11. Kobra Behravan, Nazbanoo Farzaneh, Mohsen Jahanshahi, et al. A comprehensive survey on using fog computing in vehicular networks. Vehicular Communications, 2023, 42: 100604. DOI:10.1016/j.vehcom.2023.100604
    12. Fengchun Liu, Meng Li, Xiaoxiao Liu, et al. A Review of Federated Meta-Learning and Its Application in Cyberspace Security. Electronics, 2023, 12(15): 3295. DOI:10.3390/electronics12153295
    13. Romain Dulout, Leo Mendiboure, Yannis Pousset, et al. Non-Orthogonal Multiple Access for Offloading in Multi-Access Edge Computing: A Survey. IEEE Access, 2023, 11: 118983. DOI:10.1109/ACCESS.2023.3326846
    14. Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. A QoS-Aware Fuzzy-Based System for Assessment of Edge Computing Resources in SDN-VANETs. International Journal of Mobile Computing and Multimedia Communications, 2022, 12(4): 1. DOI:10.4018/IJMCMC.289161
    15. Aisha Muhammad A. Hamdi, Farookh Khadeer Hussain, Omar K. Hussain. Task offloading in vehicular fog computing: State-of-the-art and open issues. Future Generation Computer Systems, 2022, 133: 201. DOI:10.1016/j.future.2022.03.019
    16. Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. An Intelligent Approach for Cloud-Fog-Edge Computing SDN-VANETs Based on Fuzzy Logic: Effect of Different Parameters on Coordination and Management of Resources. Sensors, 2022, 22(3): 878. DOI:10.3390/s22030878
    17. Lina Liu. The artistic design of user interaction experience for mobile systems based on context-awareness and machine learning. Neural Computing and Applications, 2022, 34(9): 6721. DOI:10.1007/s00521-021-06160-x
    18. Tidiane Sylla, Leo Mendiboure, Sassi Maaloul, et al. Multi-Connectivity for 5G Networks and Beyond: A Survey. Sensors, 2022, 22(19): 7591. DOI:10.3390/s22197591
    19. Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. FSAQoS. International Journal of Distributed Systems and Technologies, 2022, 13(1): 1. DOI:10.4018/IJDST.300338
    20. M. Almutiq, L. Sellami, B. Alaya. Dynamic Vehicular Clustering Enhancing Video on Demand Services Over Vehicular Ad-hoc Networks. Computers, Materials & Continua, 2022, 72(2): 3493. DOI:10.32604/cmc.2022.024571
    21. Bo Li, Feilong Chen, Ziyi Peng, et al. Mobility-aware dynamic offloading strategy for C-V2X under multi-access edge computing. Physical Communication, 2021, 49: 101446. DOI:10.1016/j.phycom.2021.101446
    22. Ali Hassan Sodhro, Joel J. P. C. Rodrigues, Sandeep Pirbhulal, et al. Link Optimization in Software Defined IoV Driven Autonomous Transportation System. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3511. DOI:10.1109/TITS.2020.2973878
    23. Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, et al. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions. Computer Networks, 2021, 195: 108177. DOI:10.1016/j.comnet.2021.108177
    24. Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, et al. Lane Detection: A Survey with New Results. Journal of Computer Science and Technology, 2020, 35(3): 493. DOI:10.1007/s11390-020-0476-4
    25. Jakob Mass, Satish Narayana Srirama, Chii Chang. STEP-ONE: Simulated testbed for Edge-Fog processes based on the Opportunistic Network Environment simulator. Journal of Systems and Software, 2020, 166: 110587. DOI:10.1016/j.jss.2020.110587
    26. Leo Mendiboure, Mohamed Aymen Chalouf, Francine Krief. A SDN-Based Pub/Sub Middleware for Geographic Content Dissemination in Internet of Vehicles. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), DOI:10.1109/VTCFall.2019.8891151
    27. El-Hacen Diallo, Omar Dib, Khaldoun Al Agha. The journey of Blockchain inclusion in Vehicular Networks: A Taxonomy. 2021 Third International Conference on Blockchain Computing and Applications (BCCA), DOI:10.1109/BCCA53669.2021.9657050
    28. Léo Mendiboure, Mohamed Aymen Chalouf, Francine Krief. Intelligent Network Management and Control. DOI:10.1002/9781119817840.ch8
    29. Francine Krief, Hasnaâ Aniss, Marion Berbineau, et al. Intelligent Network Management and Control. DOI:10.1002/9781119817840.ch10
    30. Jiapeng Li, Hua Huang. Research Study on Edge Computing. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud), DOI:10.1109/SmartCloud52277.2021.00012
    31. Weimin Gan, Juan Li, Yan Guo. Research on ant colony optimization network access algorithm based on model of vehicle fog calculation. 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), DOI:10.1109/ICBASE53849.2021.00018
    32. Sabri Khamari, Toufik Ahmed, Mohamed Mosbah. Edge-based Safety Intersection Assistance Architecture for Connected Vehicles. 2021 International Wireless Communications and Mobile Computing (IWCMC), DOI:10.1109/IWCMC51323.2021.9498980
    33. Radheshyam Singh, Mohamed Aymen Chalouf, Leo Mendiboure, et al. Towards an SDN-based Reconfigurable Edge Architecture for Railway Environment. 2024 7th International Conference on Advanced Communication Technologies and Networking (CommNet), DOI:10.1109/CommNet63022.2024.10793389
    34. Tidiane Sylla, Leo Mendiboure, Marion Berbineau, et al. Implementing Edge Computing Architectures for Railway Applications: An example Using the Emu5GNet Platform. 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), DOI:10.1109/VTC2023-Spring57618.2023.10200145
    35. Bechir Alaya, Lamaa Sellami, Mutiq Al Mutiq. Advances in Computational Collective Intelligence. Communications in Computer and Information Science, DOI:10.1007/978-3-031-16210-7_34
    36. Tidiane SYLLA, Mohamed Aymen CHALOUF, Léo MENDIBOURE, et al. Cooperative Intelligent Transport Systems. DOI:10.1002/9781394325849.ch12
    37. Catherine Nayer Tadros, Mohamed Gad, Bassem Mahmoud Mokhtar, et al. Vehicular Edge of Thing Computing for Sustainable Smart IoT Services. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), DOI:10.1109/WF-IoT51360.2021.9595826

    Other cited types(0)

Catalog

    Article views (23) PDF downloads (512) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return