SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Mengqi Zeng, Bin Yao, Zhi-Jie Wang, Yanyan Shen, Feifei Li, Jianfeng Zhang, Hao Lin, Minyi Guo. CATIRI: An Efficient Method for Content-and-Text Based Image Retrieval[J]. Journal of Computer Science and Technology, 2019, 34(2): 287-304. DOI: 10.1007/s11390-019-1911-2 |
[1] |
Datta R, Joshi D, Li J, Wang J Z. Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys, 2008, 40(2): Article No. 5.
|
[2] |
Long M, Cao Y, Wang J, Yu P S. Composite correlation quantization for efficient multimodal retrieval. In Proc. the 39th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Jul. 2016, pp.579-588.
|
[3] |
Zhu L, Shen J, Xie L, Cheng Z. Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans. Knowledge and Data Engineering, 2017, 29(2): 472-486.
|
[4] |
Xu B, Bu J, Chen C, Cai D, He X. EMR: A scalable graph-based ranking model for content-based image retrieval. IEEE Trans. Knowledge and Data Engineering, 2015, 27(1): 102-114.
|
[5] |
Shen H T, Jiang S, Tan K L, Huang Z, Zhou X. Speed up interactive image retrieval. The VLDB Journal, 2009, 18(1): 329-343.
|
[6] |
Falchi F, Lucchese C, Orlando S, Perego R, Rabitti F. Caching content-based queries for robust and efficient image retrieval. In Proc. the 12th Int. Conf. Extending Database Technology: Advances in Database Technology, Mar. 2009, pp.780-790.
|
[7] |
Zhang C, Chai J Y, Jin R. User term feedback in interactive text-based image retrieval. In Proc. the 28th Annual Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Aug. 2005, pp.51-58.
|
[8] |
Li W, Duan L, Xu D, Tsang I W. Text-based image retrieval using progressive multi-instance learning. In Proc. Int. Conf. Computer Vision, Nov. 2011, pp.2049-2055.
|
[9] |
Wu L, Jin R, Jain A K. Tag completion for image retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence, 2013, 35(3): 716-727.
|
[10] |
Tong S, Chang E. Support vector machine active learning for image retrieval. In Proc. the 9th ACM Int. Conf. Multimedia, Sept. 2001, pp.107-118.
|
[11] |
Liu D, Hua K A, Vu K. Fast query point movement techniques with relevance feedback for content-based image retrieval. In Proc. the 10th Int. Conf. Extending Database Technology, Mar. 2006, pp.700-717.
|
[12] |
Kulis B, Grauman K. Kernelized locality-sensitive hashing for scalable image search. In Proc. the 12th IEEE Int. Conf. Computer Vision, Sept. 2009, pp.2130-2137.
|
[13] |
Smeulders A W M, Worring M, Santini S, Gupta A, Jain R C. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380.
|
[14] |
Deng J, Berg A C, Li F F. Hierarchical semantic indexing for large scale image retrieval. In Proc. the 24th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2011, pp.785-792.
|
[15] |
Ooi B C, Tan K L, Chua T S, Hsu W. Fast image retrieval using color-spatial information. The VLDB Journal, 1998, 7(2): 115-128.
|
[16] |
Xia H, Wu P, Hoi S C H, Jin R. Boosting multi-kernel locality-sensitive hashing for scalable image retrieval. In Proc. the 35th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Aug. 2012, pp.55- 64.
|
[17] |
Christel M G. Examining user interactions with video retrieval systems. In Proc. the 2017 International Society for Optical Engineering, Oct. 2007, Article No. 650606.
|
[18] |
Zhou X S, Huang T S. Unifying keywords and visual contents in image retrieval. IEEE Multimedia, 2002, 9(2): 23- 33.
|
[19] |
Zagoris K, Chatzichristofis S A, Arampatzis A. Bag-ofvisual-words vs global image descriptors on two-stage multimodal retrieval. In Proc. the 34th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Dec. 2011, pp.1251-1252.
|
[20] |
Caicedo J C, Moreno J G, Niño E A, González F A. Combining visual features and text data for medical image retrieval using latent semantic kernels. In Proc. the 11th ACM SIGMM Int. Conf. Multimedia Information Retrieval, Mar. 2010, pp.359-366.
|
[21] |
Clinchant S, Ah-Pine J, Csurka G. Semantic combination of textual and visual information in multimedia retrieval. In Proc. the 1st ACM Int. Conf. Multimedia Retrieval, Apr. 2011, Article No. 44.
|
[22] |
Kong W, Li W J, Guo M. Manhattan hashing for large-scale image retrieval. In Proc. the 35th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Aug. 2012, pp.45-54.
|
[23] |
Zobel J, Moffat A. Inverted files for text search engines. ACM Computing Surveys, 2006, 38(2): Article No. 6.
|
[24] |
Ciaccia P, Patella M, Zezula P. M-tree: An efficient access method for similarity search in metric spaces. In Proc. the 23rd Int. Conf. Very Large Data Bases, Aug. 1997, pp.426- 435.
|
[25] |
Rasiwasia N, Pereira C J, Coviello E, Doyle G, Lanckriet G R G, Levy R, Vasconcelos N. A new approach to crossmodal multimedia retrieval. In Proc. the 18th ACM Int. Conf. Multimedia, Oct. 2010, pp.251-260.
|
[26] |
Yang C, Lozano-Pérez T. Image database retrieval with multiple-instance learning techniques. In Proc. the 16th Int. Conf. Data Engineering, Feb. 2000, pp.233-243.
|
[27] |
Natsev A, Rastogi R, Shim K. WALRUS: A similarity retrieval algorithm for image databases. In Proc. the 1999 ACM SIGMOD International Conference on Management of Data, Jun. 1999, pp.395-406.
|
[28] |
Mamou J, Mass Y, Shmueli-Scheuer M, Sznajder B. A unified inverted index for an efficient image and text retrieval. In Proc. the 32nd Annual Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Jul. 2009, pp.814-815.
|
[29] |
Rabitti F, Savino P. An information retrieval approach for image databases. In Proc. the 18th Int. Conf. Very Large Data Bases, Aug. 1992, pp.574-584.
|
[30] |
Chu W W, Ieong I T, Taira R K. A semantic modeling approach for image retrieval by content. The VLDB Journal, 1994, 3(4): 445-477.
|
[31] |
Brown L, Gruenwald L. A prototype content-based retrieval system that uses virtual images to save space. In Proc. the 27th Int. Conf. Very Large Data Bases, Sept. 2001, pp.693- 694.
|
[32] |
Chen L, Gao Y, Xing Z, Jensen C S, Chen G. I2RS: A distributed geo-textual image retrieval and recommendation system. Proceedings of the VLDB Endowment, 2015, 8(12): 1884-1887.
|
[33] |
Oliva A, Torralba A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. Journal of Computer Vision, 2001, 42(3): 145-175.
|
[34] |
Sivic J, Zisserman A. Video Google: A text retrieval approach to object matching in videos. In Proc. the 9th IEEE Int. Conf. Computer Vision, Oct. 2003, pp.1470-1477.
|
[35] |
Ponte J M, Croft W B. A language modeling approach to information retrieval. In Proc. the 21st Annual Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Aug. 1998, pp.275-281.
|
[36] |
Zhai C, Lafferty J. A study of smoothing methods for language models applied to information retrieval. ACM Trans. Information Systems, 2004, 22(2): 179-214.
|
[37] |
Depeursinge A, Müller H. Fusion techniques for combining textual and visual information retrieval. In ImageCLEF, Experimental Evaluation in Visual Information Retrieval, Müller H, Clough P, Deselaers T, Caputo B (eds.), Springer, 2010, pp.95-114.
|
[38] |
Wang J, Liu W, Kumar S, Chang S. Learning to hash for indexing big data — A survey. Proceedings of the IEEE, 2016, 104(1): 34-57.
|
[39] |
Cao X, Chen L, Cong G, Jensen C S, Qu Q, Skovsgaard A, Wu D, Yiu M L. Spatial keyword querying. In Proc. the 31st Int. Conf. Conceptual Modeling, Oct. 2012, pp.16-29.
|
[40] |
Gong Y, Lazebnik S, Gordo A, Perronnin F. Iterative quantization: A procrustean approach to learning binary codes. In Proc. the 24th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2011, pp.817-824.
|
[41] |
Hjaltason G R, Samet H. Distance browsing in spatial databases. ACM Trans. Database Systems, 1999, 24(2): 265-318.
|
[42] |
Grubinger M, Clough P, Müller H, Deselaers T. The IAPR TC-12 benchmark: A new evaluation resource for visual information systems. In Proc. International Conference on Language Resources and Evaluation, May 2006, pp.13-23.
|
[43] |
Russell B C, Torralba A, Murphy K P, Freeman W T. LabelMe: A database and web-based tool for image annotation. Int. Journal of Computer Vision, 2008, 77(1/2/3): 157-173.
|
[44] |
Chua T S, Tang J, Hong R, Li H, Luo Z, Zheng T Y. NUS-WIDE: A real-world web image database from National University of Singapore. In Proc. the 8th ACM Int. Conf. Image and Video Retrieval, Jul. 2009, Article No. 48.
|