We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Song-Hai Zhang, Shao-Kui Zhang, Yuan Liang, Peter Hall. A Survey of 3D Indoor Scene Synthesis[J]. Journal of Computer Science and Technology, 2019, 34(3): 594-608. DOI: 10.1007/s11390-019-1929-5
Citation: Song-Hai Zhang, Shao-Kui Zhang, Yuan Liang, Peter Hall. A Survey of 3D Indoor Scene Synthesis[J]. Journal of Computer Science and Technology, 2019, 34(3): 594-608. DOI: 10.1007/s11390-019-1929-5

A Survey of 3D Indoor Scene Synthesis

Funds: This work was supported by the National Key Technology Research and Development Program under Grant No. 2017YFB1002604, the National Natural Science Foundation of China under Grant Nos. 61772298 and 61832016, the Research Grant of Beijing Higher Institution Engineering Research Center and Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology.
More Information
  • Author Bio:

    Song-Hai Zhang received his Ph.D. degree in computer science and technology from Tsinghua University, Beijing, in 2007. He is currently an associate professor in the Department of Computer Science and Technology at Tsinghua University, Beijing. His research interests include image/video analysis and processing as well as geometric computing.

  • Received Date: March 14, 2019
  • Revised Date: April 16, 2019
  • Published Date: May 04, 2019
  • Indoor scene synthesis has become a popular topic in recent years. Synthesizing functional and plausible indoor scenes is an inherently difficult task since it requires considerable knowledge to both choose reasonable object categories and arrange objects appropriately. In this survey, we propose four criteria which group a wide range of 3D (three-dimensional) indoor scene synthesis techniques according to various aspects (specifically, four groups of categories). It also provides hints, through comprehensively comparing all the techniques to demonstrate their effectiveness and drawbacks, and discussions of potential remaining problems.
  • [1]
    Lyons G H. Ten Common Home Decorating Mistakes & How to Avoid Them. Blue Sage Press, 2008.
    [2]
    Germer T, Schwarz M. Procedural arrangement of furniture for real-time walkthroughs. Computer Graphics Forum, 2009, 28(8):2068-2078.
    [3]
    Merrell P, Schkufza E, Li Z et al. Interactive furniture layout using interior design guidelines. ACM Transactions on Graphics, 2011, 30(4):Article No. 87.
    [4]
    Yu L F, Yeung S K, Terzopoulos D. The clutterpalette:An interactive tool for detailing indoor scenes. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(2):1138-1148.
    [5]
    Song S, Yu F, Zeng A et al. Semantic scene completion from a single depth image. In Proc. the 2017 IEEE Conf. Computer Vision and Pattern Recognition, July 2017, pp.1746- 1754.
    [6]
    Fu Q, Chen X, Wang X et al. Adaptive synthesis of indoor scenes via activity-associated object relation graphs. ACM Transactions on Graphics, 2017, 36(6):Article No. 201.
    [7]
    Li W, Saeedi S, McCormac J et al. InteriorNet:Mega-scale multi-sensor photo-realistic indoor scenes dataset. In Proc. the 29th British Machine Vision Conference, September 2018, Article No. 77.
    [8]
    Qi S, Zhu Y, Huang S et al. Human-centric indoor scene synthesis using stochastic grammar. In Proc. the 2018 IEEE Conf. Computer Vision and Pattern Recognition, June 2018, pp.5899-5908.
    [9]
    Li Y, Zhang J, Cheng Y et al. DF2Net:Discriminative feature learning and fusion network for RGB-D indoor scene classification. In Proc. the 32nd AAAI Conference on Artificial Intelligence, February 2018, pp.7041-7048.
    [10]
    Chang A, Savva M, Manning C D. Learning spatial knowledge for text to 3D scene generation. In Proc. the 2014 Conference on Empirical Methods in Natural Language Processing, October 2014, pp.2028-2038.
    [11]
    Xie H, Xu W, Wang B. Reshuffle-based interior scene synthesis. In Proc. the 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, November 2013, pp.191-198.
    [12]
    Nan L, Xie K, Sharf A. A search-classify approach for cluttered indoor scene understanding. ACM Transactions on Graphics, 2012, 31(6):Article No. 137.
    [13]
    Yang S, Xu J, Chen K et al. View suggestion for interactive segmentation of indoor scenes. Computational Visual Media, 2017, 3(2):131-146.
    [14]
    Satkin S, Lin J, Hebert M. Data-driven scene understanding from 3D models. In Proc. the 2012 British Machine Vision Conference, September 2012, Article No. 128.
    [15]
    Lim J J, Pirsiavash H, Torralba A. Parsing IKEA objects:Fine pose estimation. In Proc. the 2013 IEEE International Conference on Computer Vision, December 2013, pp.2992- 2999.
    [16]
    Lim J J, Khosla A, Torralba A. FPM:Fine pose parts-based model with 3D CAD models. In Proc. the 13th European Conference on Computer Vision, September 2014, pp.478- 493.
    [17]
    Kim Y M, Mitra N J, Yan D M et al. Acquiring 3D indoor environments with variability and repetition. ACM Transactions on Graphics, 2012, 31(6):Article No. 138.
    [18]
    Savva M, Chang A X, Hanrahan P et al. PiGraphs:Learning interaction snapshots from observations. ACM Transactions on Graphics, 2016, 35(4):Article No. 139.
    [19]
    Bao S Y, Sun M, Savarese S. Toward coherent object detection and scene layout understanding. Image and Vision Computing, 2011, 29(9):569-579.
    [20]
    Jiang Y, Lim M, Zheng C et al. Learning to place new objects in a scene. The International Journal of Robotics Research, 2012, 31(9):1021-1043.
    [21]
    Cheng M M, Hou Q B, Zhang S H et al. Intelligent visual media processing:When graphics meets vision. Journal of Computer Science and Technology, 2017, 32(1):110-121.
    [22]
    Xu K, Ma R, Zhang H et al. Organizing heterogeneous scene collections through contextual focal points. ACM Transactions on Graphics, 2014, 33(4):Article No. 35.
    [23]
    Fisher M, Savva M, Hanrahan P. Characterizing structural relationships in scenes using graph kernels. ACM Transactions on Graphics, 2011, 30(4):Article No. 34.
    [24]
    Wu W, Fan L, Liu L et al. MIQP-based layout design for building interiors. Computer Graphics Forum, 2018, 37(2):511-521.
    [25]
    Sanchez V, Zakhor A. Planar 3D modeling of building interiors from point cloud data. In Proc. the 19th IEEE International Conference on Image Processing, September 2012, pp.1777-1780
    [26]
    Merrell P, Schkufza E, Koltun V. Computer-generated residential building layouts. ACM Transactions on Graphics, 2010, 29(6):Article No. 181.
    [27]
    Wang W, Gao W, Hu Z. Effectively modeling piecewise planar urban scenes based on structure priors and CNN. Science China Information Sciences, 2019, 62(2):Article No. 29102.
    [28]
    Fisher M, Hanrahan P. Context-based search for 3D models. ACM Transactions on Graphics, 2010, 29(6):Article No. 182.
    [29]
    Ovsjanikov M, Li W, Guibas L et al. Exploration of continuous variability in collections of 3D shapes. ACM Transactions on Graphics, 2011, 30(4):Article No. 33.
    [30]
    Chen D Y, Tian X P, Shen Y T et al. On visual similarity based 3D model retrieval. Computer Graphics Forum, 2003, 22(3):223-232.
    [31]
    Eitz M, Richter R, Boubekeur T et al. Sketch-based shape retrieval. ACM Transactions on Graphics, 2012, 31(4):Article No. 31.
    [32]
    Chen K, Lai Y, Wu Y X et al. Automatic semantic modeling of indoor scenes from low-quality RGB-D data using contextual information. ACM Transactions on Graphics, 2014, 33(6):Article No. 208.
    [33]
    Shen C H, Fu H, Chen K et al. Structure recovery by part assembly. ACM Transactions on Graphics, 2012, 31(6):Article No. 180.
    [34]
    Schuster S, Krishna R, Chang A et al. Generating semantically precise scene graphs from textual descriptions for improved image retrieval. In Proc. the 4th Workshop on Vision and Language, September 2015, pp.70-80.
    [35]
    Koller D, Friedman N. Probabilistic Graphical Models:Principles and Techniques. MIT Press, 2009.
    [36]
    Handa A, Patraucean V, Badrinarayanan V et al. Understanding real world indoor scenes with synthetic data. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.4077-4085.
    [37]
    Fisher M, Ritchie D, Savva M et al. Example-based synthesis of 3D object arrangements. ACM Transactions on Graphics, 2012, 31(6):Article No. 135.
    [38]
    Xu K, Chen K, Fu H et al. Sketch2Scene:Sketch-based co-retrieval and co-placement of 3D models. ACM Transactions on Graphics, 2013, 32(4):Article No. 123.
    [39]
    Chang A X, Eric M, Savva M et al. SceneSeer:3D scene design with natural language. arXiv:1703.00050, 2017. https://arxiv.org/abs/1703.00050, March 2019.
    [40]
    Yu L F, Yeung S K, Tang C K et al. Make it home:Automatic optimization of furniture arrangement. ACM Transactions on Graphics, 2011, 30(4):Article No. 86.
    [41]
    Wang K, Savva M, Chang A X et al. Deep convolutional priors for indoor scene synthesis. ACM Transactions on Graphics, 2018, 37(4):Article No. 70.
    [42]
    Savva M, Chang A X, Agrawala M. SceneSuggest:Context-driven 3D scene design. arXiv:1703.00061, 2017. https://arxiv.org/abs/1703.00061, March 2019.
    [43]
    Ma R, Li H, Zou C et al. Action-driven 3D indoor scene evolution. ACM Transactions on Graphics, 2016, 35(6):Article No. 173.
    [44]
    Fisher M, Savva M, Li Y et al. Activity-centric scene synthesis for functional 3D scene modeling. ACM Transactions on Graphics, 2015, 34(6):Article No. 179.
    [45]
    Li G, Zheng Y, Fan J et al. Crowdsourced data management:Overview and challenges. In Proc. the 2017 ACM International Conference on Management of Data, May 2017, pp.1711-1716.
    [46]
    Chen P P, Sun H L, Fang Y L et al. Collusion-proof result inference in crowdsourcing. Journal of Computer Science and Technology, 2018, 33(2):351-365.
    [47]
    Shao L, Chang A X, Su H et al. Cross-modal attribute transfer for rescaling 3D models. In Proc. the 2017 International Conference on 3D Vision, October 2017, pp.640-648.
    [48]
    Savva M, Chang A X, Bernstein G et al. On being the right scale:Sizing large collections of 3D models. In Proc. the 2014 SIGGRAPH Asia Indoor Scene Understanding Where Graphics Meets Vision, December 2014, Article No. 4.
    [49]
    Zhu Y, Tian Y, Metaxas D et al. Semantic amodal segmentation. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.3001-3009.
    [50]
    Du G G, Yin C L, Zhou M Q et al. Isometric 3D shape partial matching using GD-DNA. Journal of Computer Science and Technology, 2018, 33(6):1178-1191.
    [51]
    Jo S, Jeong Y, Lee S. GPU-driven scalable parser for OBJ models. Journal of Computer Science and Technology, 2018, 33(2):417-428.
    [52]
    Yin L, Guo K, Zhou B et al. 3D shape co-segmentation via sparse and low rank representations. Science China Information Sciences, 2018, 61(5):Article No. 054101.
    [53]
    Silberman N, Hoiem D, Kohli P et al. Indoor segmentation and support inference from RGBD images. In Proc. the 12th European Conference on Computer Vision, October 2012, pp.746-760.
    [54]
    Song S, Lichtenberg S P, Xiao J. SUN RGB-D:A RGBD scene understanding benchmark suite. In Proc. the 2015 IEEE Conference on Computer Vision and Pattern Recognition, June 2015, pp.567-576.
    [55]
    Anand A, Koppula H S, Joachims T et al. Contextually guided semantic labeling and search for three-dimensional point clouds. The International Journal of Robotics Research, 2013, 32(1):19-34.
    [56]
    Lai K, Bo L, Fox D. Unsupervised feature learning for 3D scene labeling. In Proc. the 2014 IEEE International Conference on Robotics and Automation, May 2014, pp.3050- 3057.
    [57]
    Mattausch O, Panozzo D, Mura C et al. Object detection and classification from large-scale cluttered indoor scans. Computer Graphics Forum, 2014, 33(2):11-21.
    [58]
    Chen K, Lai Y K, Hu S M. 3D indoor scene modeling from RGB-D data:A survey. Computational Visual Media, 2015, 1(4):267-278.
    [59]
    Hua B S, Pham Q H, Nguyen D T et al. SceneNN:A scene meshes dataset with annotations. In Proc. the 4th International Conference on 3D Vision, October 2016, pp.92-101.
    [60]
    Xiao J, Owens A, Torralba A. SUN3D:A database of big spaces reconstructed using SfM and object labels. In Proc. the 2013 IEEE International Conference on Computer Vision, December 2013, pp.1625-1632.
    [61]
    Dai A, Chang A X, Savva M et al. ScanNet:Richlyannotated 3D reconstructions of indoor scenes. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.2432-2443.
    [62]
    Handa A, Pătrăucean V, Stent S et al. SceneNet:An annotated model generator for indoor scene understanding. In Proc. the 2016 IEEE International Conference on Robotics and Automation, May 2016, pp.5737-5743.
    [63]
    McCormac J, Handa A, Leutenegger S et al. SceneNet RGB-D:Can 5M synthetic images beat generic imageNet pre-training on indoor segmentation? In Proc. the 2017 IEEE International Conference on Computer Vision, Oct. 2017, pp.2697-2706.
    [64]
    Chang A, Monroe W, Savva M et al. Text to 3D scene generation with rich lexical grounding. arXiv:1505.06289, 2015. https://arxiv.org/abs/1505.06289, March 2019.
    [65]
    Chang A X, Funkhouser T, Guibas L et al. ShapeNet:An information-rich 3D model repository. arXiv:1512.03012, 2015. https://arxiv.org/abs/1512.03012, March 2019.
    [66]
    Savva M, Chang A X, Hanrahan P. Semantically-enriched 3D models for common-sense knowledge. In Proc. the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 2015, pp.24-31.
    [67]
    Avetisyan A, Dahnert M, Dai A et al. Scan2CAD:Learning CAD model alignment in RGB-D scans. arXiv:1811.11187, 2018. https://arxiv.org/abs/1811.11187, March 2019.
    [68]
    Li M, Patil A G, Xu K et al. GRAINS:Generative recursive autoencoders for indoor scenes. ACM Transactions on Graphics, 2019, 38(2):Article No. 12.
    [69]
    Yeh Y T, Yang L, Watson M et al. Synthesizing open worlds with constraints using locally annealed reversible jump MCMC. ACM Transactions on Graphics, 2012, 31(4):Article No. 56.
    [70]
    Liang Y, Zhang S H, Martin R R. Automatic data-driven room design generation. In Proc. the 3rd International Workshop on Next Generation Computer Animation Techniques, June 2017, pp.133-148.
    [71]
    Ikehata S, Yang H, Furukawa Y. Structured indoor modeling. In Proc. the 2015 IEEE International Conference on Computer Vision, December 2015, pp.1323-1331.
    [72]
    Zhu J Z, Jia Y T, Xu J et al. Modeling the correlations of relations for knowledge graph embedding. Journal of Computer Science and Technology, 2018, 33(2):323-334.
    [73]
    Zhu S C, Mumford D. A stochastic grammar of images. Foundations and Trendsr in Computer Graphics and Vision, 2006, 2(4):259-362.
    [74]
    Savva M, Chang A X, Hanrahan P et al. SceneGrok:Inferring action maps in 3D environments. ACM Transactions on Graphics, 2014, 33(6):Article No. 212.
    [75]
    Ritchie D, Wang K, Lin Y. Fast and flexible indoor scene synthesis via deep convolutional generative models. arXiv:1811.12463, 2018. https://arxiv.org/abs/1811.12463, March 2019.
    [76]
    Xu W, Wang B, Yan D M. Wall grid structure for interior scene synthesis. Computers & Graphics, 2015, 46:231-243.
    [77]
    Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 2001, 47(2):498-519.
    [78]
    Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997, 29(2/3):131-163.
    [79]
    Jiang Y, Lim M, Saxena A. Learning object arrangements in 3D scenes using human context. arXiv:1206.6462, 2012. https://arxiv.org/abs/1206.6462, March 2019.
    [80]
    Gibson J J. The Ecological Approach to Visual Perception (1st edition). Routledge, 2014.
    [81]
    Jiang Y, Koppula H S, Saxena A. Modeling 3D environments through hidden human context. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10):2040-2053.
    [82]
    Socher R, Lin C C, Manning C et al. Parsing natural scenes and natural language with recursive neural networks. In Proc. the 28th International Conference on Machine Learning, June 2011, pp.129-136.
    [83]
    Kingma D P, Welling M. Auto-encoding variational Bayes. arXiv:1312.6114, 2013. https://arxiv.org/abs/1312.6114, March 2019.
    [84]
    Lyu F, Xi R, Han Y et al. MagicMark:A marking menu using 2D direction and 3D depth information. Science China Information Sciences, 2018, 61(6):Article No. 064101.
    [85]
    Talton J O, Lou Y, Lesser S et al. Metropolis procedural modeling. ACM Transactions on Graphics, 2011, 30(2):Article No. 11.
    [86]
    Kirkpatrick S. Optimization by simulated annealing:Quantitative studies. Journal of Statistical Physics, 1984, 34(5/6):975-986.
    [87]
    Hastings W K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57(1):97-109.
    [88]
    Metropolis N, Rosenbluth A W, Rosenbluth M N et al. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 1953, 21(6):1087-1092.
    [89]
    Ramage D, Hall D, Nallapati R et al. Labeled LDA:A supervised topic model for credit attribution in multi-labeled corpora. In Proc. the 2009 Conference on Empirical Methods in Natural Language Processing, August 2009, pp.248- 256.
    [90]
    Chen C, Wang W, Zhang Y et al. A convergence analysis for a class of practical variance-reduction stochastic gradient MCMC. Science China Information Sciences, 2018, 62(1):Article No. 12101.
    [91]
    Chang A, Savva M, Manning C. Interactive learning of spatial knowledge for text to 3D scene generation. In Proc. the 2014 Association for Computational Linguistics Workshop on Interactive Language Learning, Visualization, and Interfaces, June 2014, pp.14-21.
    [92]
    Kermani Z S, Liao Z, Tan P et al. Learning 3D scene synthesis from annotated RGB-D images. Computer Graphics Forum, 2016, 35(5):197-206.
    [93]
    Liang Y, Xu F, Zhang S H et al. Knowledge graph construction with structure and parameter learning for indoor scene design. Computational Visual Media, 2018, 4(2):123-137.
    [94]
    Ma R, Patil A G, Fisher M et al. Language-driven synthesis of 3D scenes from scene databases. In Proc. SIGGRAPH Asia 2018, September 2018, Article No. 212.
    [95]
    Shao T, Xu W, Zhou K et al. An interactive approach to semantic modeling of indoor scenes with an RGBD camera. ACM Transactions on Graphics, 2012, 31(6):Article No. 136.
    [96]
    Silberman N, Fergus R. Indoor scene segmentation using a structured light sensor. In Proc. the 2011 IEEE International Conference on Computer Vision Workshops, November 2011, pp.601-608.
    [97]
    Berge C. Hypergraphs:Combinatorics of Finite Sets (1st edition). North Holland, 1989.
    [98]
    Liu T, Hertzmann A, Li W et al. Style compatibility for 3D furniture models. ACM Transactions on Graphics, 2015, 34(4):Article No. 85.
  • Related Articles

    [1]Kushal Badal, Letu Qingge, Xiaowen Liu, Binhai Zhu. Novel Probabilistic and Machine Learning Approaches for the Protein Scaffold Gap Filling Problem[J]. Journal of Computer Science and Technology. DOI: 10.1007/s11390-025-4973-3
    [2]Chen Fu, Andrea Turrini, Xiaowei Huang, Lei Song, Yuan Feng, Li-Jun Zhang. Model Checking for Probabilistic Multiagent Systems[J]. Journal of Computer Science and Technology, 2023, 38(5): 1162-1186. DOI: 10.1007/s11390-022-1218-6
    [3]Bin-Bin Liu, Wei Dong, Jia-Xin Liu, Ya-Ting Zhang, Dai-Yan Wang. ProSy: API-Based Synthesis with Probabilistic Model[J]. Journal of Computer Science and Technology, 2020, 35(6): 1234-1257. DOI: 10.1007/s11390-020-0520-4
    [4]Yu-Ting Qiang, Yan-Wei Fu, Xiao Yu, Yan-Wen Guo, Zhi-Hua Zhou, Leonid Sigal. Learning to Generate Posters of Scientific Papers by Probabilistic Graphical Models[J]. Journal of Computer Science and Technology, 2019, 34(1): 155-169. DOI: 10.1007/s11390-019-1904-1
    [5]PENG Guoqiang, CHENG Hu. A Causal Model for Diagnostic Reasoning[J]. Journal of Computer Science and Technology, 2000, 15(3): 287-294.
    [6]MA Zongmin, ZHANG W. J, MA W. Y. Extending the Relational Model to Deal with Probabilistic Data[J]. Journal of Computer Science and Technology, 2000, 15(3): 230-240.
    [7]LU Sanglu, ZHOU Xiaoboand, XIE Li. A Model for Dynamic Adaptive Coscheduling[J]. Journal of Computer Science and Technology, 1999, 14(3): 267-275.
    [8]Hu zhanyi, YANG Changjiang, YANG Yi, MA Songde. An Inherent Probabilistic Aspect of the Hough Transform[J]. Journal of Computer Science and Technology, 1999, 14(1): 44-48.
    [9]Xiang Dong, Wei Daozheng, Chen Shisong. Probabilistic Models for Estimation of Random and Pseudo-Random Test Length[J]. Journal of Computer Science and Technology, 1992, 7(2): 164-174.
    [10]Huang Heyan. A Parallel Implementation Model of HPARLOG[J]. Journal of Computer Science and Technology, 1986, 1(4): 27-38.
  • Cited by

    Periodical cited type(45)

    1. Anqi Wang, Jiahua Dong, Lik-Hang Lee, et al. A Survey on Deep Learning for Design and Generation of Virtual Architecture. ACM Computing Surveys, 2025, 57(2): 1. DOI:10.1145/3688569
    2. Yizhan Shao, Weitao You, Ziqing Zheng, et al. CONDA: Introducing Context-Aware Decision Making Assistant in Virtual Reality for Interior Renovation. International Journal of Human–Computer Interaction, 2025. DOI:10.1080/10447318.2025.2470285
    3. Shao-Kui Zhang, Wei-Yu Xie, Chen Wang, et al. ScenePalette: Contextually Exploring Object Collections Through Multiplex Relations in 3D Scenes. Journal of Computer Science and Technology, 2024, 39(5): 1180. DOI:10.1007/s11390-022-2194-6
    4. Qixiang Ma, Lili Wang, Wei Ke, et al. SMigraPH: a perceptually retained method for passive haptics-based migration of MR indoor scenes. The Visual Computer, 2024, 40(11): 8023. DOI:10.1007/s00371-023-03220-2
    5. Maryam Okhovvat, Elham Andaroodi, Morteza Okhovvat. Generating common spaces through virtual reality telepresence and shared scene synthesis. Journal of Building Engineering, 2024, 91: 109508. DOI:10.1016/j.jobe.2024.109508
    6. Jeou-Shyan Horng, Hsuan Hsu. Optimizing learning outcomes in aesthetic education through technological integration: AR/VR applications in hospitality aesthetics course. Education and Information Technologies, 2024, 29(16): 20905. DOI:10.1007/s10639-024-12718-8
    7. Shaohua Zhang. ParaViewWeb architecture method of power security emergency drill platform based on VR technology. Multimedia Tools and Applications, 2024, 83(3): 6447. DOI:10.1007/s11042-023-15934-5
    8. Jia-Mu Sun, Jie Yang, Kaichun Mo, et al. Haisor: Human-aware Indoor Scene Optimization via Deep Reinforcement Learning. ACM Transactions on Graphics, 2024, 43(2): 1. DOI:10.1145/3632947
    9. Weitao You, Yizhan Shao, Ziqing Zheng, et al. Old house new home: Facilitating interior design with RedesignUS in virtual reality. Displays, 2023, 80: 102555. DOI:10.1016/j.displa.2023.102555
    10. J. Timothy Balint, Rafael Bidarra. Procedural Generation of Narrative Worlds. IEEE Transactions on Games, 2023, 15(2): 262. DOI:10.1109/TG.2022.3216582
    11. Lin Gao, Jia-Mu Sun, Kaichun Mo, et al. SceneHGN: Hierarchical Graph Networks for 3D Indoor Scene Generation With Fine-Grained Geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8902. DOI:10.1109/TPAMI.2023.3237577
    12. Shao-Kui Zhang, Hou Tam, Yi-Xiao Li, et al. SceneViewer: Automating Residential Photography in Virtual Environments. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(12): 5523. DOI:10.1109/TVCG.2022.3214836
    13. Song-Hai Zhang, Shao-Kui Zhang, Wei-Yu Xie, et al. Fast 3D Indoor Scene Synthesis by Learning Spatial Relation Priors of Objects. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(9): 3082. DOI:10.1109/TVCG.2021.3050143
    14. Jelena Pejic, Petar Pejic. Linear kitchen layout design via machine learning. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2022, 36 DOI:10.1017/S089006042100038X
    15. Yu Weijun, Jun Ye. 3D Indoor Scene Synthesis System Based on Collaborative Retrieval. Wireless Communications and Mobile Computing, 2022, 2022: 1. DOI:10.1155/2022/3178571
    16. Siyuan Zhu, Xinjie Wang, Ming Wang, et al. Example-based large-scale marine scene authoring using Wang Cubes. Visual Informatics, 2022, 6(3): 23. DOI:10.1016/j.visinf.2022.05.004
    17. Mohammad Keshavarzi, Mohammad Rahmani-Asl. GenFloor: Interactive generative space layout system via encoded tree graphs. Frontiers of Architectural Research, 2021, 10(4): 771. DOI:10.1016/j.foar.2021.07.003
    18. Shao-Kui Zhang, Wei-Yu Xie, Song-Hai Zhang. Geometry-Based Layout Generation with Hyper-Relations AMONG Objects. Graphical Models, 2021, 116: 101104. DOI:10.1016/j.gmod.2021.101104
    19. Jiahui Mao, Tingting Li, Feiyu Zhang, et al. Bas‐relief layout arrangement via automatic method optimization. Computer Animation and Virtual Worlds, 2021, 32(3-4) DOI:10.1002/cav.2012
    20. Jia‐Qi Zhang, Xiang Xu, Zhi‐Meng Shen, et al. Write‐An‐Animation: High‐level Text‐based Animation Editing with Character‐Scene Interaction. Computer Graphics Forum, 2021, 40(7): 217. DOI:10.1111/cgf.14415
    21. Yuerong Li, Xingce Wang, Zhongke Wu, et al. Flexible indoor scene synthesis based on multi-object particle swarm intelligence optimization and user intentions with 3D gesture. Computers & Graphics, 2020, 93: 1. DOI:10.1016/j.cag.2020.08.002
    22. Marko Palviainen, Tatu Harviainen, Miguel Bordallo Lopez, et al. Boosting Business With Machine Learning-Based Automated Visual Data Processing: Results of Finnish Company Interviews. IEEE Access, 2020, 8: 99171. DOI:10.1109/ACCESS.2020.2993669
    23. Song-Hai Zhang, Zheng-Ping Zhou, Bin Liu, et al. What and where: A context-based recommendation system for object insertion. Computational Visual Media, 2020, 6(1): 79. DOI:10.1007/s41095-020-0158-8
    24. Qiang Fu, Hongbo Fu, Hai Yan, et al. Human-centric metrics for indoor scene assessment and synthesis. Graphical Models, 2020, 110: 101073. DOI:10.1016/j.gmod.2020.101073
    25. Alexandru Gradinaru, Mihnea Vrejoiu, Florica Moldoveanu, et al. Evaluating the usage of Text to3D scene generation methods in Game-Based Learning. 2023 24th International Conference on Control Systems and Computer Science (CSCS), DOI:10.1109/CSCS59211.2023.00105
    26. Shao-Kui Zhang, Hanxi Zhu, Xuebin Chen, et al. ScenePhotographer: Object-Oriented Photography for Residential Scenes. Proceedings of the 32nd ACM International Conference on Multimedia, DOI:10.1145/3664647.3680942
    27. Mohammad Keshavarzi, Michael Zollhoefer, Allen Y. Yang, et al. Synthesizing Novel Spaces for Remote Telepresence Experiences. 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), DOI:10.1109/ISMAR-Adjunct57072.2022.00111
    28. Benoit Renault, Jacques Saraydaryan, and Olivier Simonin. Modeling a Social Placement Cost to Extend Navigation Among Movable Obstacles (NAMO) Algorithms. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), DOI:10.1109/IROS45743.2020.9340892
    29. Song-Hai Zhang, Yu-Kun Lai. RGB-D Image Analysis and Processing. Advances in Computer Vision and Pattern Recognition, DOI:10.1007/978-3-030-28603-3_12
    30. Miao Wang, Zi-Ming Ye, Jin-Chuan Shi, et al. Scene-Context-Aware Indoor Object Selection and Movement in VR. 2021 IEEE Virtual Reality and 3D User Interfaces (VR), DOI:10.1109/VR50410.2021.00045
    31. Hameedullah Farooki, Esra Ataer-Cansizoglu, Jae-Woo Choi, et al. Interactive and Scalable Layout Synthesis with Design Templates. 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), DOI:10.1109/AIVR50618.2020.00049
    32. Haitao Yang, Zaiwei Zhang, Siming Yan, et al. Scene Synthesis via Uncertainty-Driven Attribute Synchronization. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), DOI:10.1109/ICCV48922.2021.00558
    33. Giuseppe Abrami, Alexander Henlein, Attila Kett, et al. Text2SceneVR. Proceedings of the 31st ACM Conference on Hypertext and Social Media, DOI:10.1145/3372923.3404791
    34. Alexander Henlein, Attila Kett, Daniel Baumartz, et al. Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-35748-0_32
    35. Xia Su, Chenglin Wu, Wen Gao, et al. Design Computing and Cognition’20. DOI:10.1007/978-3-030-90625-2_15
    36. Pulak Purkait, Christopher Zach, Ian Reid. Computer Vision – ECCV 2020. Lecture Notes in Computer Science, DOI:10.1007/978-3-030-58586-0_10
    37. Shao-Kui Zhang, Yi-Xiao Li, Yu He, et al. MageAdd: Real-Time Interaction Simulation for Scene Synthesis. Proceedings of the 29th ACM International Conference on Multimedia, DOI:10.1145/3474085.3475194
    38. Haocheng Du, Yunlong Zhao, Shuo Huang, et al. MyRoom: A Unity Plugin for Procedural and Interactive Indoor Scene Synthesis. 2023 IEEE Conference on Games (CoG), DOI:10.1109/CoG57401.2023.10333189
    39. Wanwan Li. Simulating Virtual Construction Scenes on OpenStreetMap. 2022 the 6th International Conference on Virtual and Augmented Reality Simulations, DOI:10.1145/3546607.3546610
    40. Zhaoda Ye, Xinhan Zheng, Yang Liu, et al. RelScene: A Benchmark and baseline for Spatial Relations in text-driven 3D Scene Generation. Proceedings of the 32nd ACM International Conference on Multimedia, DOI:10.1145/3664647.3681653
    41. Siyuan Huang, Zan Wang, Puhao Li, et al. Diffusion-based Generation, Optimization, and Planning in 3D Scenes. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), DOI:10.1109/CVPR52729.2023.01607
    42. Wei Liang, Luhui Wang, Xinzhe Yu, et al. Optimizing Product Placement for Virtual Stores. 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), DOI:10.1109/VR55154.2023.00049
    43. Yinyu Nie, Angela Dai, Xiaoguang Han, et al. Learning 3D Scene Priors with 2D Supervision. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), DOI:10.1109/CVPR52729.2023.00083
    44. Lei Zhang, Jin Pan, Jacob Gettig, et al. VRCopilot: Authoring 3D Layouts with Generative AI Models in VR. Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology, DOI:10.1145/3654777.3676451
    45. Maryem Belkaid, El Arbi Abdellaoui Alaoui, Mostafa Merras, et al. Review of 3D Scene Reconstruction: From Traditional Methods to Advanced Deep Learning Models. 2024 3rd International Conference on Embedded Systems and Artificial Intelligence (ESAI), DOI:10.1109/ESAI62891.2024.10913495

    Other cited types(0)

Catalog

    Article views (190) PDF downloads (1048) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return