SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Xin-Chen Liu, Wu Liu, Hua-Dong Ma, Shuang-Qun Li. PVSS: A Progressive Vehicle Search System for Video Surveillance Networks[J]. Journal of Computer Science and Technology, 2019, 34(3): 634-644. DOI: 10.1007/s11390-019-1932-x |
[1] |
Ma H D. Internet of Things:Objectives and scientific challenges. Journal of Computer Science and Technology (JCST), 2011, 26(9):919-924.
|
[2] |
Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998, 30(1/2/3/4/5/6/7):107-117.
|
[3] |
Ma H D, Liu W. A progressive search paradigm for the Internet of things. IEEE MultiMedia, 2018, 25(1):76-86.
|
[4] |
Zhang J P, Wang F Y, Wang K F et al. Data-driven intelligent transportation systems:A survey. IEEE Trans. Intelligent Transportation Systems, 2011, 12(4):1624-1639.
|
[5] |
Yuan J Z, Chen H, Zhao B, Xu Y Y. Estimation of vehicle pose and position with monocular camera at urban road intersections. JCST, 2017, 32(6):1150-1161.
|
[6] |
Valera M, Velastin S A. Intelligent distributed surveillance systems:A review. IEE Proceedings-Vision, Image and Signal Processing, 2005, 152(2):192-204.
|
[7] |
Feris R, Siddiquie B, Zhai Y et al. Attribute-based vehicle search in crowded surveillance videos. In Proc. the 1st Int. Conf. Multimedia Retrieval, April 2011, Article No. 18.
|
[8] |
Feris R S, Siddiquie B, Petterson J et al. Large-scale vehicle detection, indexing, and search in urban surveillance videos. IEEE Transactions on Multimedia, 2012, 14(1):28-42.
|
[9] |
Wang Q, Ding Y D. A novel fine-grained method for vehicle type recognition based on the locally enhanced PCANet neural network. JCST, 2018, 33(2):335-350.
|
[10] |
Liu X C, Liu W, Ma H S, Fu H Y. Large-scale vehicle reidentification in urban surveillance videos. In Proc. the 2016 IEEE International Conference on Multimedia and Expo, July 2016, Article No. 145.
|
[11] |
Liu H, Tian Y, Yang Y, Pang L, Huang T. Deep relative distance learning:Tell the difference between similar vehicles. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.2167- 2175.
|
[12] |
Liu X C, Liu W, Mei T, Ma H D. A deep learning based approach to progressive vehicle re-identification for urban surveillance. In Proc. the 14th European Conference on Computer Vision, October 2016, pp.869-884.
|
[13] |
Shen Y, Xiao T, Li H, Yi S, Wang X. Learning deep neural networks for vehicle re-ID with visual-spatio-temporal path proposals. In Proc. the 2017 IEEE International Conference on Computer Vision (ICCV), October 2017, pp.1918- 1927.
|
[14] |
Wang Z, Tang L, Liu X et al. Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. In Proc. the 2017 ICCV, October 2017, pp.379-387.
|
[15] |
Liu X C, Liu W, Ma H D, Li S Q. A progressive vehicle search system for video surveillance networks. In Proc. the 4th IEEE Int. Conf. Multimedia Big Data, September 2018, Article No. 40.
|
[16] |
Sivic J, Zisserman A. Video Google:A text retrieval approach to object matching in videos. In Proc. the 9th ICCV, October 2003, pp.1470-1477.
|
[17] |
Lew M S, Sebe N, Djeraba C, Jain R. Content-based multimedia information retrieval:State of the art and challenges. ACM Transactions on Multimedia Computing, Communications, and Applications, 2006, 2(1):1-19.
|
[18] |
Hu W, Xie N, Li L et al. A survey on visual content-based video indexing and retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2011, 41(6):797-819.
|
[19] |
Mei T, Rui Y, Li S, Tian Q. Multimedia search reranking:A literature survey. ACM Computing Surveys, 2014, 46(3):Article No. 38.
|
[20] |
Liu W, Mei T, Zhang Y D. Instant mobile video search with layered audio-video indexing and progressive transmission. IEEE Transactions on Multimedia, 2014, 16(8):2242-2255.
|
[21] |
Zheng L, Yang Y, Tian Q. SIFT meets CNN:A decade survey of instance retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5):1224-1244.
|
[22] |
Lin Y L, Tsai M K, Hsu W H, Chen C W. Investigating 3-D model and part information for improving content-based vehicle retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(3):401-413.
|
[23] |
Farhadi A, Endres I, Hoiem D et al. Describing objects by their attributes. In Proc. the 2009 CVPR, June 2009, pp.1778-1785.
|
[24] |
Zheng L, Wang S, Liu Z, Tian Q. Fast image retrieval:Query pruning and early termination. IEEE Transactions on Multimedia, 2015, 17(5):648-659.
|
[25] |
Gong S, Cristani M, Yan S C, Loy C C. Person ReIdentification. Springer-Verlag London, 2014.
|
[26] |
Zheng L, Shen L, Tian L et al. Scalable person reidentification:A benchmark. In Proc. the 2015 ICCV, December 2015, pp.1116-1124.
|
[27] |
Zheng L, Yang Y, Hauptmann A G. Person reidentification:Past, present and future. arXiv:1610.02984, 2016. http://arxiv.org/abs/1610.02984, March 2019.
|
[28] |
Sun Y, Zheng L, Deng W, Wang S. SVDNet for pedestrian retrieval. In Proc. the 2017 ICCV, October 2017, pp.3820- 3828.
|
[29] |
Li W, Zhao R, Xiao T, Wang X. DeepReID:Deep filter pairing neural network for person re-identification. In Proc. the 2014 CVPR, June 2014, pp.152-159.
|
[30] |
Liao S, Hu Y, Zhu X, Li S Z. Person re-identification by local maximal occurrence representation and metric learning. In Proc. the 2015 CVPR, June 2015, pp.2197-2206.
|
[31] |
Zhang L, Xiang T, Gong S. Learning a discriminative null space for person re-identification. In Proc. the 2016 CVPR, June 2016, pp.1239-1248.
|
[32] |
Hermans A, Beyer L, Leibe B. In defense of the triplet loss for person re-identification. arXiv:1703.07737, 2017. http://arxiv.org/abs/1703.07737, March 2019.
|
[33] |
Feris R, Bobbitt R, Brown L, Pankanti S. Attribute-based people search:Lessons learnt from a practical surveillance system. In Proc. the 2014 Int. Conf. Multimedia Retrieval, April 2014, Article No. 153.
|
[34] |
Xu J, Jagadeesh V, Ni Z et al. Graph-based topic-focused retrieval in distributed camera network. IEEE Transactions on Multimedia, 2013, 15(8):2046-2057.
|
[35] |
Yang L, Luo P, Change Loy C, Tang X. A large-scale car dataset for fine-grained categorization and verification. In Proc. the 2015 CVPR, June 2015, pp.3973-3981.
|
[36] |
Liu X C, Ma H D, Fu H Y, Zhou M. Vehicle retrieval and trajectory inference in urban traffic surveillance scene. In Proc. the 2014 Int. Conf. Distributed Smart Cameras, November 2014, Article No. 26.
|
[37] |
Ren S, He K, Girshick R, Sun J. Faster R-CNN:Towards real-time object detection with region proposal networks. In Proc. the 2015 Annual Conference on Neural Information Processing Systems, December 2015, pp.91-99.
|
[38] |
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. the 2016 CVPR, June 2016, pp.770-778.
|
[39] |
Russakovsky O, Deng J, Su H et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3):211-252.
|
[40] |
Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification. In Proc. the 2015 CVPR, June 2005, pp.539-546.
|
[41] |
Muja M, Lowe D G. Scalable nearest neighbor algorithms for high dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11):2227- 2240.
|
[42] |
Liu X C, Liu W, Mei T, Ma H D. PROVID:Progressive and multimodal vehicle reidentification for large-scale urban surveillance. IEEE Transactions on Multimedia, 2018, 20(3):645-658.
|
[43] |
Yan Y, Ni B, Song Z et al. Person re-identification via recurrent feature aggregation. In Proc. the 14th European Conference on Computer Vision, Part VI, October 2016, pp.701- 716.
|
[44] |
You J, Wu A, Li X, Zheng W S. Top-push video-based person re-identification. In Proc. the 2016 CVPR, June 2016, pp.1345-1353.
|
[1] | Quentin Pajon, Swan Serre, Hugo Wissocq, Léo Rabaud, Siba Haidar, Antoun Yaacoub. Balancing Accuracy and Training Time in Federated Learning for Violence Detection in Surveillance Videos: A Study of Neural Network Architectures[J]. Journal of Computer Science and Technology, 2024, 39(5): 1029-1039. DOI: 10.1007/s11390-024-3702-7 |
[2] | Zhong-Zheng Peng, Yi-Xin Yang, Jin-Hui Tang, Jin-Shan Pan. Video Colorization: A Survey[J]. Journal of Computer Science and Technology, 2024, 39(3): 487-508. DOI: 10.1007/s11390-024-4143-z |
[3] | Yi-Hong Gao, Hua-Dong Ma, Wu Liu. Minimizing Resource Cost for Camera Stream Scheduling in Video Data Center[J]. Journal of Computer Science and Technology, 2017, 32(3): 555-570. DOI: 10.1007/s11390-017-1743-x |
[4] | Lei-Gen Cheng, Laizhong Cui, Yong Jiang. CPA-VoD: Cloud and Peer-Assisted Video on Demand System for Mobile Devices[J]. Journal of Computer Science and Technology, 2016, 31(6): 1087-1095. DOI: 10.1007/s11390-016-1684-9 |
[5] | Wen Hu, Zhi Wang, Ming Ma, Li-Feng Sun. Edge Video CDN: A Wi-Fi Content Hotspot Solution[J]. Journal of Computer Science and Technology, 2016, 31(6): 1072-1086. DOI: 10.1007/s11390-016-1683-x |
[6] | Zhi-Neng Chen, Chong-Wah Ngo, Wei Zhang, Juan Cao, Yu-Gang Jiang. Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues[J]. Journal of Computer Science and Technology, 2014, 29(5): 785-798. DOI: 10.1007/s11390-014-1468-z |
[7] | FENG Jing, MA Xiaojun, GU Boxuan, GU Guanqun. An Aided Tool for Enterprise Network Design[J]. Journal of Computer Science and Technology, 2000, 15(5): 491-497. |
[8] | ZHENG Fang, WU Jian, SONG Zhanjiang. Improving the Syllable-Synchronous Network Search Algorithm for Word Decoding in Continuous Chinese Speech Recognition[J]. Journal of Computer Science and Technology, 2000, 15(5): 461-471. |
[9] | ZHUANG Yueting, RUI Yong, Thomas S.Huang. Video Key Frame Extraction by Unsupervised Clustering and Feedback Adjustment[J]. Journal of Computer Science and Technology, 1999, 14(3): 283-287. |
[10] | Shuai Dianxun. Hyper-Distributed Hyper-Parallel Implementation of Heuristic Search of Implicit AND/OR Graph[J]. Journal of Computer Science and Technology, 1997, 12(6): 532-542. |
1. | Zheming Xu, Lili Wei, Congyan Lang, et al. SSR-Net: A Spatial Structural Relation Network for Vehicle Re-identification. ACM Transactions on Multimedia Computing, Communications, and Applications, 2022. DOI:10.1145/3578578 |
2. | Shangzhi Teng, Shiliang Zhang, Qingming Huang, et al. Multi-View Spatial Attention Embedding for Vehicle Re-Identification. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 816. DOI:10.1109/TCSVT.2020.2980283 |
3. | Zhedong Zheng, Tao Ruan, Yunchao Wei, et al. VehicleNet: Learning Robust Visual Representation for Vehicle Re-Identification. IEEE Transactions on Multimedia, 2021, 23: 2683. DOI:10.1109/TMM.2020.3014488 |
4. | Qi Liu, Song-Lu Chen, Zhen-Jia Li, et al. Document Analysis and Recognition – ICDAR 2021. Lecture Notes in Computer Science, DOI:10.1007/978-3-030-86337-1_9 |
5. | Eleni Kamenou, Jesus Martinez del Rincon, Paul Miller, et al. Multi-level Deep Learning Vehicle Re-identification using Ranked-based Loss Functions. 2020 25th International Conference on Pattern Recognition (ICPR), DOI:10.1109/ICPR48806.2021.9412415 |
6. | Melike Sah, Cem Direkoglu. LightWeight Deep Convolutional Neural Networks for Vehicle Re-Identification using Diffusion-based Image Masking. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), DOI:10.1109/HORA52670.2021.9461345 |
7. | Xian Zhong, Shilei Zhao, Xiao Wang, et al. Unsupervised Vehicle Search in the Wild. Proceedings of the 29th ACM International Conference on Multimedia, DOI:10.1145/3474085.3475654 |