BHONEM: Binary High-Order Network Embedding Methods for Networked-Guarantee Loans
-
Abstract
Networked-guarantee loans may cause systemic risk related concern for the government and banks in China. The prediction of the default of enterprise loans is a typical machine learning based classification problem, and the networked guarantee makes this problem very difficult to solve. As we know, a complex network is usually stored and represented by an adjacency matrix. It is a high-dimensional and sparse matrix, whereas machine-learning methods usually need lowdimensional dense feature representations. Therefore, in this paper, we propose a binary higher-order network embedding method to learn the low-dimensional representations of a guarantee network. We first set vertices of this heterogeneous economic network by binary roles (guarantor and guarantee), and then define high-order adjacent measures based on their roles and economic domain knowledge. Afterwards, we design a penalty parameter in the objective function to balance the importance of network structure and adjacency. We optimize it by negative sampling based gradient descent algorithms, which solve the limitation of stochastic gradient descent on weighted edges without compromising efficiency. Finally, we test our proposed method on three real-world network datasets. The result shows that this method outperforms other start-of-the-art algorithms for both classification accuracy and robustness, especially in a guarantee network.
-
-