SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Wan-Wei Liu, Fu Song, Tang-Hao-Ran Zhang, Ji Wang. Verifying ReLU Neural Networks from a Model Checking Perspective[J]. Journal of Computer Science and Technology, 2020, 35(6): 1365-1381. DOI: 10.1007/s11390-020-0546-7 |
[1] |
Mcculloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 1943, 5:115-133.
|
[2] |
Salehinejad H, Baarbe J, Sankar S, Barfett J, Colak E, Valaee S. Recent advances in recurrent neural networks. arXiv:1801.01078, 2018. https://arxiv.org/abs/1801.01078, May 2020.
|
[3] |
LeCun Y. Generalization and network design strategies. In Connectionism in Perspective, Pfeifer R, Schreter Z, Fogelman-Soulié F, Steels L (eds.), Elsevier, 1989, pp.143-155.
|
[4] |
Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines. In Proc. the 27th International Conference on Machine Learning, June 2010, pp.807-814.
|
[5] |
Lei N, Luo Z, Yau S, Gu X D. Geometric understanding of deep learning. arXiv:1805.10451, 2018. https://arxiv.org/abs/1805.10451, May 2020.
|
[6] |
Clarke E M, Emerson E A. Design and synthesis of synchronization skeletons using branching-time temporal logic. In Proc. the 3rd Workshop on Logics of Programs, May 1981, pp.52-71.
|
[7] |
Queille J, Sifakis J. Specification and verification of concurrent systems in CESAR. In Proc. the 5th Int. Symp. Programming, April 1982, pp.337-351.
|
[8] |
Katz G, Barrett C W, Dill D L, Julian K, Kochenderfer M J. Reluplex:An efficient SMT solver for verifying deep neural networks. In Proc. the 29th Int. Conf. Computer Aided Verification, July 2017, pp.97-117.
|
[9] |
Pnueli A. The temporal logic of programs. In Proc. the 18th Annual Symp. Foundations of Computer Science, October 1977, pp.46-57.
|
[10] |
Pnueli A, Rosner R. On the synthesis of a reactive module. In Proc. the 16th Annual ACM Symp. Principles of Programming Languages, January 1989, pp.179-190.
|
[11] |
Manna Z, Zarba C G. Combining decision procedures. In Proc. the 10th Anniversary Colloquium of the Int. Institute for Software Technology of the United Nations University, March 2002, pp.381-422.
|
[12] |
Davenport J H, Heintz J. Real quantifier elimination is doubly exponential. J. Symbolic Computation, 1988, 5(1/2):29-35.
|
[13] |
Huang X, Kwiatkowska M, Wang S, Wu M. Safety verification of deep neural networks. In Proc. the 29th Int. Conf. Computer Aided Verification, July 2017, pp.3-29.
|
[14] |
Ruan W, Huang X, Kwiatkowska M. Reachability analysis of deep neural networks with provable guarantees. In Proc. the 27th Int. Joint Conf. Artificial Intelligence, July 2018, pp.2651-2659.
|
[15] |
Pulina L, Tacchella A. An abstraction-refinement approach to verification of artificial neural networks. In Proc. the 22nd Int. Conf. Computer Aided Verification, July 2010, pp.243-257.
|
[16] |
Dutta S, Jha S, Sankaranarayanan S, Tiwari A. Output range analysis for deep feedforward neural networks. In Proc. the 10th Int. Symposium NASA Formal Methods, April 2018, pp.121-138.
|
[17] |
Weng T, Zhang H, Chen H, Song Z, Hsieh C, Daniel L, Duane S B, Dhillon I S. Towards fast computation of certified robustness for ReLU networks. In Proc. the 35th Int. Conf. Machine Learning, July 2018, pp.5273-5282.
|
[18] |
Penrose R. A generalized inverse for matrices. Mathematical Proc. the Cambridge, 1955, 51:406-413.
|
[19] |
Penrose R. On the best approximate solution of linear matrix equations. Mathematical Proceedings of the Cambridge Philosophical Society, 1956, 52(1):17-19.
|
[20] |
Farkas G. über die theorie der einfachen ungleichungen. J. die Reine und Angewandte Mathematik, 1902, 124:1-24. (in German)
|
[21] |
Lomuscio A, Maganti L. An approach to reachability analysis for feed-forward ReLU neural networks. arXiv:1706.07351, 2017. https://arxiv.org/abs/1706.07351, May 2020.
|
[22] |
Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo E, Wu M, Yi X. Safety and trustworthiness of deep neural networks:A survey. arXiv:1812.08342v4, 2019. https://arxiv.org/abs/1812.08342, April 2020.
|
[23] |
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I J, Fergus R. Intriguing properties of neural networks. In Proc. the 2nd Int. Conf. Learning Representations, April 2014.
|
[24] |
Lei Y, Chen S, Fan L, Song F, Liu Y. Advanced evasion attacks and mitigations on practical ML-based phishing website classifiers. arXiv:2004.06954, 2020. https://arxiv.org/abs/2004.06954, May 2020.
|
[25] |
Chen G, Chen S, Fan L, Du X, Zhao Z, Song F, Liu Y. Who is real Bob? Adversarial attacks on speaker recognition systems. arXiv:1911.01840, 2019. https://arxiv.org/abs/1911.01840, May 2020.
|
[26] |
Duan Y, Zhao Z, Bu L, Song F. Things you may not know about adversarial example:A black-box adversarial image attack. arXiv:1905.07672, 2019. https://arxiv.org/abs/1905.07672, May 2020.
|
[27] |
Narodytska N, Kasiviswanathan S P, Ryzhyk L, Sagiv M, Walsh T. Verifying properties of binarized deep neural networks. In Proc. the 32nd AAAI Conf. Artificial Intelligence, February 2018, pp.6615-6624.
|
[28] |
Cheng C, Nührenberg G, Ruess H. Maximum resilience of artificial neural networks. In Proc. the 15th Int. Symp. Automated Technology for Verification and Analysis, October 2017, pp.251-268.
|
[29] |
Bunel R, Turkaslan I, Torr P H S, Kohli P, Mudigonda P K. A unified view of piecewise linear neural network verification. In Proc. the 32nd Annual Conf. Neural Information Processing Systems, December 2018, pp.4795-4804.
|
[30] |
Tran H, Lopez D M, Musau P, Yang X, Nguyen L V, Xiang W, Johnson T T. Star-based reachability analysis of deep neural networks. In Proc. the 3rd World Congress on Formal Methods, October 2019, pp.670-686.
|
[31] |
Cousot P, Cousot R. Abstract interpretation:A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In Proc. the 4th ACM Symp. Principles of Programming Languages, January 1977, pp.238-252.
|
[32] |
Gehr T, Mirman M, Drachsler-Cohen D, Tsankov P, Chaudhuri S, Vechev M T. AI2:Safety and robustness certification of neural networks with abstract interpretation. In Proc. the 39th IEEE Symp. Security and Privacy, May 2018, pp.3-18.
|
[33] |
Wang S, Pei K, Whitehouse J, Yang J, Jana S. Formal security analysis of neural networks using symbolic intervals. In Proc. the 27th USENIX Security Symp., August 2018, pp.1599-1614.
|
[34] |
Singh G, Gehr T, Püschel M, Vechev M. T. Boosting robustness certification of neural networks. In Proc.the 7th International Conference on Learning Representations, May 2019.
|
[35] |
Wan W, Zhang Z, Zhu Y, Zhang M, Song F. Accelerating robustness verification of deep neural networks guided by target labels. arXiv:2007.08520, 2020. https://arxiv.org/abs/2007.08520, July 2020.
|
[1] | Zhen Liang, Wan-Wei Liu, Fu Song, Bai Xue, Wen-Jing Yang, Ji Wang, Zheng-Bin Pang. Qualitative and Quantitative Model Checking Against Recurrent Neural Networks[J]. Journal of Computer Science and Technology, 2024, 39(6): 1292-1311. DOI: 10.1007/s11390-023-2703-2 |
[2] | Zhen-Hua Duan, Maciej Koutny. A Framed Temporal Logic Programming Language[J]. Journal of Computer Science and Technology, 2004, 19(3). |
[3] | Li Minglu, Sun Yongqiang, Sheng Huany. Nondeterministic Temporal Relations in Multimedia Data[J]. Journal of Computer Science and Technology, 1997, 12(3): 244-251. |
[4] | Zhong Shaochun, Liu Dayou. Processing of Uncertainty Temporal Relations[J]. Journal of Computer Science and Technology, 1996, 11(1): 72-82. |
[5] | Sun Yuan. The Modelling of Temporal Data in the Relational Database Environment[J]. Journal of Computer Science and Technology, 1995, 10(2): 163-174. |
[6] | Shuai Dianxun. High-Order Two-Dimension Cluster Competitive Activation Mechanisms Used for Performing Symbolic Logic Algorithms of Problem Solving[J]. Journal of Computer Science and Technology, 1995, 10(2): 124-133. |
[7] | Zhao Zhaokeng, Dai Jun, Chen Wendan. Automated Theorem Proving in Temporal Logic:T-Resolution[J]. Journal of Computer Science and Technology, 1994, 9(1): 53-62. |
[8] | Lin Huimin, Gong Chun, Xie Hongliang. Abstract Implementation of Algebraic Specifications in a Temporal Logic Language[J]. Journal of Computer Science and Technology, 1991, 6(1): 11-20. |
[9] | Xie Hongliang, Gong Jie, C.S.Tang. A Structured Temporal Logic Language:XYZ/SE[J]. Journal of Computer Science and Technology, 1991, 6(1): 1-10. |
[10] | Li Renwei. A Natural Deduction System of Temporal Logic[J]. Journal of Computer Science and Technology, 1988, 3(3): 173-185. |
1. | Zhen Liang, Taoran Wu, Changyuan Zhao, et al. BIRDNN: Behavior-Imitation Based Repair for Deep Neural Networks. Neural Networks, 2025, 183: 106949. DOI:10.1016/j.neunet.2024.106949 |
2. | Zhen Liang, Wan-Wei Liu, Fu Song, et al. Qualitative and Quantitative Model Checking Against Recurrent Neural Networks. Journal of Computer Science and Technology, 2024, 39(6): 1292. DOI:10.1007/s11390-023-2703-2 |
3. | Zhe Zhao, Guangke Chen, Tong Liu, et al. Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples. ACM Transactions on Software Engineering and Methodology, 2024, 33(3): 1. DOI:10.1145/3631977 |
4. | Zhen Liang, Dejin Ren, Bai Xue, et al. Verifying safety of neural networks from topological perspectives. Science of Computer Programming, 2024, 236: 103121. DOI:10.1016/j.scico.2024.103121 |
5. | Yedi Zhang, Zhe Zhao, Guangke Chen, et al. Precise Quantitative Analysis of Binarized Neural Networks: A BDD-based Approach. ACM Transactions on Software Engineering and Methodology, 2023, 32(3): 1. DOI:10.1145/3563212 |
6. | Zhen Liang, Taoran Wu, Wanwei Liu, et al. Towards robust neural networks via a global and monotonically decreasing robustness training strategy. Frontiers of Information Technology & Electronic Engineering, 2023, 24(10): 1375. DOI:10.1631/FITEE.2300059 |
7. | Lei Bu, Zhe Zhao, Yuchao Duan, et al. Taking Care of the Discretization Problem: A Comprehensive Study of the Discretization Problem and a Black-Box Adversarial Attack in Discrete Integer Domain. IEEE Transactions on Dependable and Secure Computing, 2022, 19(5): 3200. DOI:10.1109/TDSC.2021.3088661 |
8. | Fu Song, Yusi Lei, Sen Chen, et al. Advanced evasion attacks and mitigations on practical ML‐based phishing website classifiers. International Journal of Intelligent Systems, 2021, 36(9): 5210. DOI:10.1002/int.22510 |
9. | Yedi Zhang, Zhe Zhao, Guangke Chen, et al. QVIP: An ILP-based Formal Verification Approach for Quantized Neural Networks. Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, DOI:10.1145/3551349.3556916 |
10. | Zhen Liang, Dejin Ren, Wanwei Liu, et al. Theoretical Aspects of Software Engineering. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-35257-7_15 |
11. | Xingwu Guo, Wenjie Wan, Zhaodi Zhang, et al. Eager Falsification for Accelerating Robustness Verification of Deep Neural Networks. 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), DOI:10.1109/ISSRE52982.2021.00044 |
12. | Xiyue Zhang, Xiaohong Chen, Meng Sun. Theoretical Aspects of Computing – ICTAC 2022. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-17715-6_28 |
13. | Yedi Zhang, Zhe Zhao, Guangke Chen, et al. Computer Aided Verification. Lecture Notes in Computer Science, DOI:10.1007/978-3-030-81685-8_8 |
14. | Ye Tao, Wanwei Liu, Fu Song, et al. Automated Technology for Verification and Analysis. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-45329-8_18 |
15. | Emanuele De Angelis, Guglielmo De Angelis, Maurizio Proietti. A Classification Study on Testing and Verification of AI-based Systems. 2023 IEEE International Conference On Artificial Intelligence Testing (AITest), DOI:10.1109/AITest58265.2023.00010 |
16. | Yantao Bai, Wanwei Liu, Xinjun Mao, et al. Modeling Neural Networks Training Process with Markov Decision Process. 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE), DOI:10.1109/ICAICE54393.2021.00102 |
17. | Zhe Zhao, Guangke Chen, Jingyi Wang, et al. Attack as defense: characterizing adversarial examples using robustness. Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, DOI:10.1145/3460319.3464822 |
18. | Yedi Zhang, Fu Song, Jun Sun. Computer Aided Verification. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-37703-7_20 |
19. | XinFeng Shu, YanLin Li, WeiRan Gao. Structured Object-Oriented Formal Language and Method. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-29476-1_3 |
20. | Zhe Zhao, Yedi Zhang, Guangke Chen, et al. Static Analysis. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-22308-2_20 |
21. | Zhen Liang, Changyuan Zhao, Wanwei Liu, et al. A Geometrical Characterization on Feature Density of Image Datasets. 2023 IEEE International Conference on Multimedia and Expo (ICME), DOI:10.1109/ICME55011.2023.00313 |