We use cookies to improve your experience with our site.
Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture[J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. DOI: 10.1007/s11390-020-0679-8
Citation: Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture[J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. DOI: 10.1007/s11390-020-0679-8

Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture

  • COVID-19 is a contagious infection that has severe effects on the global economy and our daily life. Accurate diagnosis of COVID-19 is of importance for consultants, patients, and radiologists. In this study, we use the deep learning network AlexNet as the backbone, and enhance it with the following two aspects: 1) adding batch normalization to help accelerate the training, reducing the internal covariance shift; 2) replacing the fully connected layer in AlexNet with three classifiers: SNN, ELM, and RVFL. Therefore, we have three novel models from the deep COVID network (DC-Net) framework, which are named DC-Net-S, DC-Net-E, and DC-Net-R, respectively. After comparison, we find the proposed DC-Net-R achieves an average accuracy of 90.91% on a private dataset (available upon email request) comprising of 296 images while the specificity reaches 96.13%, and has the best performance among all three proposed classifiers. In addition, we show that our DC-Net-R also performs much better than other existing algorithms in the literature.

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return