SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Qing-Mei Tan, Xu-Na Wang. Multi-Attribute Preferences Mining Method for Group Users with the Process of Noise Reduction[J]. Journal of Computer Science and Technology, 2021, 36(4): 944-960. DOI: 10.1007/s11390-021-0102-0 |
[1] |
Guo Y, Lu Z, Kuang H, Wang C. Information avoidance behavior on social network sites:Information irrelevance, overload, and the moderating role of time pressure. International Journal of Information Management, 2020, 52:Article No. 102067. DOI: 10.1016/j.ijinfomgt.2020.102067.
|
[2] |
Saxena D, Lamest M. Information overload and coping strategies in the big data context:Evidence from the hospitality sector. Journal of Information Science, 2018, 44(3):287-297. DOI: 10.1177/0165551517693712.
|
[3] |
Peng J, Wang T, Chen Y, Liu T, Xu W. User recommendation based on cross-platform online social networks. Journal on Communications, 2018, 39(03):147-158. DOI:10.11959/j.issn.1000-436x.2018044. (in Chinese)
|
[4] |
Tao L, Cao J, Liu F. Dynamic feature weighting based on user preference sensitivity for recommender systems. Knowledge-Based Systems, 2018, 149:61-75. DOI: 10.1016/j.knosys.2018.02.019.
|
[5] |
Chai H, Lei J, Fang M. Estimating Bayesian networks parameters using EM and Gibbs sampling. Procedia Computer Science, 2017, 111:160-166. DOI: 10.1016/j.procs.2017.06.023.
|
[6] |
Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3(4):993-1022. DOI: 10.1162/jmlr.2003.3.4-5.993.
|
[7] |
Vu H Q, Li G, Law R. Discovering implicit activity preferences in travel itineraries by topic modeling. Tourism Management, 2019, 75:435-446. DOI: 10.1016/j.tourman.2019.06.011.
|
[8] |
Zhang Y, Wei H, Ran Y, Deng Y, Liu D. Drawing openness to experience from user generated contents:An interpretable data-driven topic modeling approach. Expert Systems with Applications, 2020, 144:Article No. 113073. DOI: 10.1016/j.eswa.2019.113073.
|
[9] |
Schwarz C. Ldagibbs:A command for topic modeling in Stata using latent Dirichlet allocation. The Stata Journal, 2018, 18(1):101-117. DOI: 10.1177/1536867X1801800107.
|
[10] |
Abdar M, Yen N Y. Analysis of user preference and expectation on shared economy platform:An examination of correlation between points of interest on Airbnb. Computers in Human Behavior, 2018, 107:Article No. 105730. DOI: 10.1016/j.chb.2018.09.039.
|
[11] |
Kim J E, Kessler L, McCauley Z, Niiyama I, Boyle L N. Human factors considerations in designing a personalized mobile dialysis device:An interview study. Applied Ergonomics, 2020, 85:103003. DOI: 10.1016/j.apergo.2019.103003.
|
[12] |
Li Z, Hensher D A, Ho C. An empirical investigation of values of travel time savings from stated preference data and revealed preference data. Transportation Letters, 2020, 12(3):166-171. DOI: 10.1080/19427867.2018.1546806.
|
[13] |
Feng C, Liang J, Song P, Wang Z. A fusion collaborative filtering method for sparse data in recommender systems. Information Sciences, 2020, 521:365-379. DOI: 10.1016/j.ins.2020.02.052.
|
[14] |
Hong M, Jung J J. Multi-sided recommendation based on social tensor factorization. Information Sciences, 2018, 447:140-156. DOI: 10.1016/j.ins.2018.03.019.
|
[15] |
Geng Y, Li Q, Liang M, Chi C Y, Tan J, Huang H. Local-density subspace distributed clustering for highdimensional data. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(8):1799-1814. DOI: 10.1109/TPDS.2020.2975550.
|
[16] |
Mowlaei M E, Abadeh M S, Keshavarz H. Aspect-based sentiment analysis using adaptive aspect-based lexicons. Expert Systems with Applications, 2020, 148:Article No. 113234. DOI: 10.1016/j.eswa.2020.113234.
|
[17] |
Pujahari A, Sisodia D S. Pair-wise preference relation based probabilistic matrix factorization for collaborative filtering in recommender system. Knowledge-Based Systems, 2020, 196:Article No. 105798. DOI: 10.1016/j.knosys.2020.105798.
|
[18] |
Logesh R, Subramaniyaswamy V, Malathi D, Sivaramakrishnan N, Vijayakumar V. Enhancing recommendation stability of collaborative filtering recommender system through bio-inspired clustering ensemble method. Neural Computing and Applications, 2020, 32:2141-2164. DOI: 10.1007/s00521-018-3891-5.
|
[19] |
Yang X, Zhou S, Cao M. An approach to alleviate the sparsity problem of hybrid collaborative filtering based recommendations:The product-attribute perspective from user reviews. Mobile Networks and Applications, 2020, 25:376-390. DOI: 10.1007/s11036-019-01246-2.
|
[20] |
Li W, Li J, Liu X, Dong L. Two fast vector-wise update algorithms for orthogonal nonnegative matrix factorization with sparsity constraint. Journal of Computational and Applied Mathematics, 2020, 375:Article No. 112785. DOI: 10.1016/j.cam.2020.112785.
|
[21] |
Lu H, Sang X, Zhao Q, Lu J. Community detection algorithm based on nonnegative matrix factorization and pairwise constraints. Physica A:Statistical Mechanics and its Applications, 2020, 545:Article No. 123491. DOI: 10.1016/j.physa.2019.123491.
|
[22] |
Khan Z, Iltaf N, Afzal H, Abbas H. Enriching non-negative matrix factorization with contextual embeddings for recommender systems. Neurocomputing, 2020, 380:246-258. DOI: 10.1016/j.neucom.2019.09.080.
|
[23] |
Kim H, Kim H K, Cho S. Improving spherical k-means for document clustering:Fast initialization, sparse centroid projection, and efficient cluster labeling. Expert Systems with Applications, 2020, 150:Article No. 113288. DOI: 10.1016/j.eswa.2020.113288.
|
[24] |
Zhou B, Funaki Y, Horiuchi H, Tohsaki A. Nonlocalized clustering and evolution of cluster structure in nuclei. Frontiers of Physics, 2020, 15(1):Article No. 14401. DOI: 10.1007/s11467-019-0917-0.
|
[25] |
Luarn P, Kuo H C, Lin H W, Chiu Y P, Jhan Y C. Analyzing user preferences using Facebook fan pages. Interfaces, 2018, 48(2):166-175. DOI: 10.1287/inte.2017.0919.
|
[26] |
Zhang X, Liu H, Chen X, Zhong J, Wang D. A novel hybrid deep recommendation system to differentiate user's preference and item's attractiveness. Information Sciences, 2020, 519:306-316. DOI: 10.1016/j.ins.2020.01.044.
|
[27] |
Guo W, Liu F. Research on collaborative filtering personalized recommendation algorithm based on deep learning optimization. In Proc. the 2019 International Conference on Robots & Intelligent System, June 2019, pp.90-93. DOI: 10.1109/ICRIS.2019.00031.
|
[28] |
Han J, Zheng L, Xu Y, Zhang B. Adaptive deep modeling of users and items using side information for recommendation. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(3):737-748. DOI: 10.1109/TNNLS.2019.2909432.
|
[29] |
Chambua J, Niu Z, Zhu Y. User preferences prediction approach based on embedded deep summaries. Expert Systems with Applications, 2019, 132:87-98. DOI: 10.1016/j.eswa.2019.04.047.
|
[30] |
Laohakiat S, Phimoltares S, Lursinsap C. A Clustering algorithm for stream data with LDA-based unsupervised localized dimension reduction. Information Sciences, 2017, 381:104-123. DOI: 10.1016/j.ins.2016.11.018.
|
[31] |
Kyaw N E E, Wai T T. Inferring user preferences using reviews for rating prediction. In Proc. the 2019 International Conference on Advanced Information Technologies, November 2019, pp.194-199. DOI: 10.1109/AITC.2019.8921179.
|
[32] |
Chen L, Yan D, Wang F. User perception of sentimentintegrated critiquing in recommender systems. International Journal of Human-Computer Studies, 2019, 121:4-20. DOI: 10.1016/j.ijhcs.2017.09.005.
|
[33] |
Lei X, Qian X, Zhao G. Rating prediction based on social sentiment from textual reviews. IEEE Transactions on Multimedia, 2016, 18(9):1910-1921. DOI: 10.1109/TMM.2016.2575738.
|
[34] |
Chen C T, Ren J T. Forum latent Dirichlet allocation for user interest discovery. Knowledge-Based Systems, 2017, 126:1-7. DOI: 10.1016/j.knosys.2017.04.006.
|
[35] |
Pu X, Wu G, Yuan C. User-aware topic modeling of online reviews. Multimedia Systems, 2019, 25(1):59-69. DOI: 10.1007/s00530-017-0557-6.
|
[36] |
Liang S, Yilmaz E, Kanoulas E. Collaboratively tracking interests for user clustering in streams of short texts. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2):257-272. DOI: 10.1109/TKDE.2018.2832211.
|
[37] |
Li J, Ma X. Research on hot news discovery model based on user interest and topic discovery. Cluster Computing, 2019, 22(4):8483-8491. DOI: 10.1007/s10586-018-1880-1.
|
[38] |
Ma X, Lei X, Zhao G, Qian X. Rating prediction by exploring user's preference and sentiment. Multimedia Tools and Applications, 2018, 77(6):6425-6444. DOI: 10.1007/s11042-017-4550-z.
|
[39] |
Chen Z, Liu B. Mining topics in documents:Standing on the shoulders of big data. In Proc. the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2014, pp.1116-1125. DOI: 10.1145/2623330.2623622.
|
[40] |
Hofmann T. Probabilistic latent semantic indexing. In Proc. the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 1999, pp.50-57. DOI: 10.1145/312624.312649.
|
[41] |
Ge B, Zheng W, Yang G M, Lu Y, Zheng H J. Microblog topic mining based on a combined TF-IDF and LDA topic model. In Proc. the 2018 International Conference on Automatic Control, Mechatronics and Industrial Engineering, October 2018, pp.29-31. DOI: 10.1201/9780429468605-40.
|
[42] |
Baek J W, Chung K Y. Multimedia recommendation using Word2Vec-based social relationship mining. Multimedia Tools and Applications. DOI: 10.1007/s11042-019-08607-9.
|
[43] |
Landauer T K, McNamara D S, Dennis S, Kintsch W. Handbook of Latent Semantic Analysis (1st edition). Routledge, 2014.
|
[44] |
Peng Y, Wan C X, Jiang T J, Liu D X, Liao G Q. Extracting product aspect and user opinions based on semantic constrained LDA model. Journal of Software, 2017, 28(03):676-693. DOI:10.13328/j.cnki.jos.005154. (in Chinese)
|
[45] |
Bu Y, Zou S, Liang Y, Venugopal V. Estimation of KL divergence:Optimal minimax rate. IEEE Transactions on Information Theory, 2018, 64(4):2648-2674. DOI: 10.1109/TIT.2018.2805844.
|
[46] |
Grosse I, Bernaola-Galván P, Carpena P, Román-Roldán R, Oliver J, Stanley, H E. Analysis of symbolic sequences using the Jensen-Shannon divergence. Physical Review E, 2002, 65(4):Article No. 041905. DOI: 10.1103/PhysRevE.65.041905.
|