We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Xiao-Qing Deng, Bo-Lin Chen, Wei-Qi Luo, Da Luo. Universal Image Steganalysis Based on Convolutional Neural Network with Global Covariance Pooling[J]. Journal of Computer Science and Technology, 2022, 37(5): 1134-1145. DOI: 10.1007/s11390-021-0572-0
Citation: Xiao-Qing Deng, Bo-Lin Chen, Wei-Qi Luo, Da Luo. Universal Image Steganalysis Based on Convolutional Neural Network with Global Covariance Pooling[J]. Journal of Computer Science and Technology, 2022, 37(5): 1134-1145. DOI: 10.1007/s11390-021-0572-0

Universal Image Steganalysis Based on Convolutional Neural Network with Global Covariance Pooling

Funds: The work was supported in part by the National Natural Science Foundation of China under Grant No. 61972430, the Natural Science Foundation of Guangdong Province of China under Grant No. 2019A1515011549, the Guangdong Natural Science Key Field Project under Grant No. 2019KZDZX1008.
More Information
  • Author Bio:

    Wei-Qi Luo received his Ph.D. degree in computer science and technology from Sun Yat-sen University, Guangzhou, in 2008. He is currently a professor with the School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, where he is also a researcher with the Guangdong Key Laboratory of Information Security Technology, Guangzhou. His current research interests include digital multimedia forensics, steganography, and steganalysis.

  • Corresponding author:

    Wei-Qi Luo E-mail: luoweiqi@mail.sysu.edu.cn

  • Received Date: April 20, 2020
  • Revised Date: June 06, 2021
  • Accepted Date: June 28, 2021
  • Published Date: September 29, 2022
  • Recently, steganalytic methods based on deep learning have achieved much better performance than traditional methods based on handcrafted features. However, most existing methods based on deep learning are specially designed for one image domain (i.e., spatial or JPEG), and they often take long time to train. To make a balance between the detection performance and the training time, in this paper, we propose an effective and relatively fast steganalytic network called US-CovNet (Universal Steganalytic Covariance Network) for both {the} spatial and JPEG domains. To this end, we carefully design several important components of {US-CovNet} that will significantly affect the detection performance, including the high-pass filter set, the shortcut connection and the pooling {layer}. Extensive experimental results show that compared with the current best steganalytic networks (i.e., SRNet and J-YeNet), {US-CovNet} can achieve the state-of-the-art results for detecting spatial steganography and have competitive performance for detecting JPEG steganography. For example, the detection accuracy of US-CovNet is at least 0.56% higher than that of SRNet in the spatial domain. In the JPEG domain, US-CovNet performs slightly worse than J-YeNet in some cases with the degradation of less than 0.78%. However, the training time of US-CovNet is significantly reduced, which is less than 1/4 and 1/2 of SRNet and J-YeNet respectively.
  • [1]
    Fridrich J, Kodovsky J. Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 868-882. DOI: 10.1109/TIFS.2012.2190402.
    [2]
    Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 432-444. DOI: 10.1109/TIFS.2011.2175919.
    [3]
    Holub V, Fridrich J. Random projections of residuals for digital image steganalysis. IEEE Transactions on Information Forensics and Security, 2013, 8(12): 1996-2006. DOI: 10.1109/TIFS.2013.2286682.
    [4]
    Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J. Selection-channel-aware rich model for steganalysis of digital images. In Proc. the IEEE International Workshop on Information Forensics and Security, December 2014, pp.48-53. DOI: 10.1109/WIFS.2014.7084302.
    [5]
    Song X, Liu F, Yang C, Luo X, Zhang Y. Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In Proc. the 3rd ACM Workshop on Information Hiding and Multimedia Security, June 2015, pp.15-23. DOI: 10.1145/2756601.2756608.
    [6]
    Denemark T, Boroumand M, Fridrich J. Steganalysis features for content-adaptive JPEG steganography. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1736-1746. DOI: 10.1109/TIFS.2016.2555281.
    [7]
    Tan S, Li B. Stacked convolutional auto-encoders for steganalysis of digital images. In Proc. the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, December 2014. DOI: 10.1109/APSIPA.2014.7041565.
    [8]
    Qian Y, Dong J, Wang W, Tan T. Deep learning for steganalysis via convolutional neural networks. In Proc. the 2015 SPIE/IS&T Electronic Imaging Symposium, February 2015, Article No. 94090J. DOI: 10.1117/12.2083479.
    [9]
    Xu G, Wu H Z, Shi Y Q. Structural design of convolutional neural networks for steganalysis. IEEE Signal Processing Letters, 2016, 23(5): 708-712. DOI: 10.1109/LSP.2016.2548421.
    [10]
    Ye J, Ni J, Yi Y. Deep learning hierarchical representations for image steganalysis. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2545-2557. DOI: 10.1109/TIFS.2017.2710946.
    [11]
    Huang J, Ni J, Wan L, Yan J. A customized convolutional neural network with low model complexity for JPEG steganalysis. In Proc. the ACM Workshop on Information Hiding and Multimedia Security, July 2019, pp.198-203. DOI: 10.1145/3335203.3335734.
    [12]
    Boroumand M, Chen M, Fridrich J. Deep residual network for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1181-1193. DOI: 10.1109/TIFS.2018.2871749.
    [13]
    Yedroudj M, Comby F, Chaumont M. Yedroudj-Net: An efficient CNN for spatial steganalysis. In Proc. the IEEE International Conference on Acoustics, Speech and Signal Processing, April 2018, pp.2092-2096. DOI: 10.1109/ICASSP.2018.8461438.
    [14]
    Ye D, Jiang S, Li S, Liu C. Faster and transferable deep learning steganalysis on GPU. Journal of Real-Time Image Processing, 2019, 16(3): 623-633. DOI: 10.1007/s11554-019-00870-1.
    [15]
    Li S, Ye D, Jiang S, Liu C, Niu X, Luo X. Anti-steganalysis for image on convolutional neural networks. Multimedia Tools and Applications, 2020, 79(7): 4315-4331. DOI: 10.1007/s11042-018-7046-6.
    [16]
    Jiang S, Ye D, Huang J, Shang Y, Zheng Z. SmartSteganogaphy: Light-weight generative audio steganography model for smart embedding application. Journal of Networking and Computer Applications, 2020, 165: Article No. 102689. DOI: 10.1016/j.jnca.2020.102689.
    [17]
    Kodovský J, Fridrich J, Holub V. On dangers of overtraining steganography to incomplete cover model. In Proc. the 13th ACM Multimedia Workshop on Multimedia and Security, September 2011, pp.69-76. DOI: 10.1145/2037252.2037266.
    [18]
    Zhang R, Zhu F, Liu J, Liu G. Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis. IEEE Transactions on Information Forensics and Security, 2020, 15: 1138-1150. DOI: 10.1109/TIFS.2019.2936913.
    [19]
    Li Q, Feng G, Wu H, Zhang X. Ensemble steganalysis based on deep residual network. In Proc. the 18th International Workshop on Digital-Forensics and Watermarking, November 2019, pp.84-95. DOI: 10.1007/978-3-030-43575-2.
    [20]
    Su A, Zhao X. Boosting image steganalysis under universal deep learning architecture incorporating ensemble classification strategy. IEEE Signal Processing Letters, 2019, 26(12): 1852-1856. DOI: 10.1109/LSP.2019.2950081.
    [21]
    Kim J, Park H, Park J. CNN-based image steganalysis using additional data embedding. Multimedia Tools and Applications, 2020, 79(1/2): 1355-1372. DOI: 10.1007/s11042-019-08251-3.
    [22]
    Li Q, Shao Z, Tan S, Zeng J, Li B. Non-structured pruning for deep-learning based steganalytic frameworks. In Proc. the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, November 2019, pp.1735-1739. DOI: 10.1109/APSIPAASC47483.2019.9023018.
    [23]
    Deng X, Chen B, Luo W, Luo D. Fast and effective global covariance pooling network for image steganalysis. In Proc. the ACM Workshop on Information Hiding and Multimedia Security, July 2019, pp.230-234. DOI: 10.1145/3335203.3335739.
    [24]
    Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. the 32nd International Conference on Machine Learning, July 2015, pp.448-456.
    [25]
    Li P, Xie J, Wang Q, Gao Z. Towards faster training of global covariance pooling networks by iterative matrix square root normalization. In Proc. the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.947-955. DOI: 10.1109/CVPR.2018.00105.
    [26]
    He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.770-778. DOI: 10.1109/CVPR.2016.90.
    [27]
    Wu S, Zhong S, Liu Y. Steganalysis via deep residual network. In Proc. the 22nd IEEE International Conference on Parallel and Distributed Systems, December 2016, pp.1233-1236. DOI: 10.1109/ICPADS.2016.0167.
    [28]
    Li P, Xie J, Wang Q, Zuo W. Is second-order information helpful for large-scale visual recognition? In Proc. the IEEE International Conference on Computer Vision, October 2017, pp.2089-2097. DOI: 10.1109/ICCV.2017.228.
    [29]
    Bas P, Filler T, Pevný T. “Break our steganographic system”: The ins and outs of organizing BOSS. In Proc. the 13th International Workshop on Information Hiding, May 2011, pp.59-70. DOI: 10.1007/978-3-642-24178-9.
    [30]
    He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proc. the IEEE International Conference on Computer Vision, December 2015, pp.1026-1034. DOI: 10.1109/ICCV.2015.123.
    [31]
    Bengio Y, Louradour J, Collobert R, Weston J. Curriculum learning. In Proc. the 26th International Conference on Machine Learning, June 2009, pp.41-48. DOI: 10.1145/1553374.1553380.
    [32]
    Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain. EURASIP Journal on Information Security, 2014, 2014: Article No. 1. DOI: 10.1186/1687-417X-2014-1.
    [33]
    Li B, Wang M, Huang J, Li X. A new cost function for spatial image steganography. In Proc. the IEEE International Conference on Image Processing, October 2014, pp.4206-4210. DOI: 10.1109/ICIP.2014.7025854.
    [34]
    Holub V, Fridrich J. Designing steganographic distortion using directional filters. In Proc. the IEEE International Workshop on Information Forensics and Security, December 2012, pp.234-239. DOI: 10.1109/WIFS.2012.6412655.
    [35]
    Guo L, Ni J, Shi Y Q. Uniform embedding for efficient JPEG steganography. IEEE Transactions on Information Forensics and Security, 2014, 9(5): 814-825. DOI: 10.1109/TIFS.2014.2312817.
    [36]
    Denemark T, Fridrich J, Comesaña-Alfaro P. Improving selection-channel-aware steganalysis features. Electronic Imaging, 2016, 28: Article No. art00016. DOI: 10.2352/ISSN.2470-1173.2016.8.MWSF-080.
    [37]
    Elsken T, Metzen J H, Hutter F. Neural architecture search: A survey. Journal of Machine Learning Research, 2019, 20: Article No. 55.
  • Related Articles

    [1]Xin Tan, Long-Yin Zhang, Guo-Dong Zhou. Document-Level Neural Machine Translation with Hierarchical Modeling of Global Context[J]. Journal of Computer Science and Technology, 2022, 37(2): 295-308. DOI: 10.1007/s11390-021-0286-3
    [2]Dan-Hao Zhu, Xin-Yu Dai, Jia-Jun Chen. Pre-Train and Learn: Preserving Global Information for Graph Neural Networks[J]. Journal of Computer Science and Technology, 2021, 36(6): 1420-1430. DOI: 10.1007/s11390-020-0142-x
    [3]Shao-Jie Qiao, Guo-Ping Yang, Nan Han, Hao Chen, Fa-Liang Huang, Kun Yue, Yu-Gen Yi, Chang-An Yuan. Cardinality Estimator: Processing SQL with a Vertical Scanning Convolutional Neural Network[J]. Journal of Computer Science and Technology, 2021, 36(4): 762-777. DOI: 10.1007/s11390-021-1351-7
    [4]Zhang-Jin Huang, Xiang-Xiang He, Fang-Jun Wang, Qing Shen. A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks[J]. Journal of Computer Science and Technology, 2021, 36(2): 434-444. DOI: 10.1007/s11390-021-9599-5
    [5]Robail Yasrab. SRNET: A Shallow Skip Connection Based Convolutional Neural Network Design for Resolving Singularities[J]. Journal of Computer Science and Technology, 2019, 34(4): 924-938. DOI: 10.1007/s11390-019-1950-8
    [6]Dong-Di Zhao, Fan Li, Kashif Sharif, Guang-Min Xia, Yu Wang. Space Efficient Quantization for Deep Convolutional Neural Networks[J]. Journal of Computer Science and Technology, 2019, 34(2): 305-317. DOI: 10.1007/s11390-019-1912-1
    [7]Bei-Ji Zou, Yun-Di Guo, Qi He, Ping-Bo Ouyang, Ke Liu, Zai-Liang Chen. 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising[J]. Journal of Computer Science and Technology, 2018, 33(4): 838-848. DOI: 10.1007/s11390-018-1859-7
    [8]Xi-Jin Zhang, Yi-Fan Lu, Song-Hai Zhang. Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks[J]. Journal of Computer Science and Technology, 2016, 31(3): 489-500. DOI: 10.1007/s11390-016-1642-6
    [9]Wang Shitong. Normalized Exponential Neural Networks[J]. Journal of Computer Science and Technology, 1998, 13(4): 375-383.
    [10]Sun Jigui, Cheng Xiaochun, Liu Xuhua. The Global Properties of Valid Formulas in Modal Logic K[J]. Journal of Computer Science and Technology, 1996, 11(6): 615-621.
  • Others

  • Cited by

    Periodical cited type(11)

    1. Jian He, Shaowei Weng, Lifang Yu, et al. Steganalysis Network With Two-Branch Preprocessing for Spatial and JPEG Domains. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(2): 1451. DOI:10.1109/TCSVT.2024.3470809
    2. Tong Fu, Liquan Chen, Yinghua Jiang, et al. Image Steganalysis Based on Dual-Path Enhancement and Fractal Downsampling. IEEE Transactions on Information Forensics and Security, 2025, 20: 1. DOI:10.1109/TIFS.2024.3493615
    3. Ntivuguruzwa Jean de la Croix, Tohari Ahmad, Fengling Han, et al. HSDetect-Net: A Fuzzy-Based Deep Learning Steganalysis Framework to Detect Possible Hidden Data in Digital Images. IEEE Access, 2025, 13: 43013. DOI:10.1109/ACCESS.2025.3546510
    4. Tong Fu, Liquan Chen, Yuan Gao, et al. DCANet: CNN model with dual-path network and improved coordinate attention for JPEG steganalysis. Multimedia Systems, 2024, 30(4) DOI:10.1007/s00530-024-01433-6
    5. Zhiqiang Wu, Shuhui Wan. An Image Steganalysis Algorithm Based on Multi-Resolution Feature Fusion. International Journal of Information Security and Privacy, 2024, 18(1): 1. DOI:10.4018/IJISP.359893
    6. Numrena Farooq, Roohie Naaz Mir. Image Steganalysis using Deep Convolution Neural Networks: A Literature Survey. International Journal of Sensors, Wireless Communications and Control, 2024, 14(4): 247. DOI:10.2174/0122103279296370240529075507
    7. Hamza Kheddar, Mustapha Hemis, Yassine Himeur, et al. Deep learning for steganalysis of diverse data types: A review of methods, taxonomy, challenges and future directions. Neurocomputing, 2024, 581: 127528. DOI:10.1016/j.neucom.2024.127528
    8. Ntivuguruzwa Jean de La Croix, Tohari Ahmad. Toward Hidden Data Detection via Local Features Optimization in Spatial Domain Images. 2023 Conference on Information Communications Technology and Society (ICTAS), DOI:10.1109/ICTAS56421.2023.10082736
    9. Yuanlin Yang. Large Capacity Data Hiding in Binary Image black and white mixed regions. 2023 3rd International Conference on Electronic Information Engineering and Computer (EIECT), DOI:10.1109/EIECT60552.2023.10441974
    10. Akram Kadhim Mshet, Huda Kadhim Tayyeh. Deep learning-based image Steganalysis. CYBER DEFENSE IRAQ: CDI2024, DOI:10.1063/5.0235246
    11. Mehrab Hosain, Rajiv Kapoor. Advances in Artificial-Business Analytics and Quantum Machine Learning. Lecture Notes in Electrical Engineering, DOI:10.1007/978-981-97-2508-3_49

    Other cited types(0)

Catalog

    Article views (85) PDF downloads (2) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return