SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Lan-Fang Dong, Han-Chao Liu, Xin-Ming Zhang. Synthetic Data Generation and Shuffled Multi-Round Training Based Offline Handwritten Mathematical Expression Recognition[J]. Journal of Computer Science and Technology, 2022, 37(6): 1427-1443. DOI: 10.1007/s11390-021-0722-4 |
[1] |
Mouchère H, Zanibbi R, Garain U, Viard-Gaudin C. Advancing the state of the art for handwritten math recognition: The CROHME competitions, 2011–2014. International Journal on Document Analysis and Recognition, 2016, 19(2): 173-189. DOI: 10.1007/s10032-016-0263-5.
|
[2] |
Zhang J, Du J, Zhang S, Liu D, Hu Y, Hu J, Wei S, Dai L. Watch, attend and parse: An end-to-end neural network based approach to handwritten mathematical recognition. Pattern Recognition, 2017, 71: 196-206. DOI: 10.1016/j.patcog.2017.06.017.
|
[3] |
Anderson R H. Syntax-directed recognition of hand-printed two-dimensional mathematics. In Proc. the ACM Symposium on Interactive Systems for Experimental Applied Mathematics, August 1967, pp.436-459. DOI: 10.1145/2402536.2402585.
|
[4] |
Mouchère H, Viard G C, Zanibbi R, Garain U. ICFHR 2014 competition on recognition of online handwritten mathematical s (CROHME 2014). In Proc. the 2014 IEEE International Conference on Frontiers in Handwriting, September 2014, pp.791-796. DOI: 10.1109/ICFHR.2014.138.
|
[5] |
Mouchère H, Viard G C, Zanibbi R, Garain U. ICFHR2016 CROHME: Competition on recognition of online handwritten mathematical s. In Proc. the 2016 IEEE International Conference on Frontiers in Handwriting Recognition, October 2016, pp.607-612. DOI: 10.1109/ICFHR.2016.0116.
|
[6] |
Hu L, Zanibbi R. Segmenting handwritten math symbols using AdaBoost and multi-scale shape context features. In Proc. the 2013 IEEE International Conference on Document Analysis and Recognition, August 2013, pp.1180-1184. DOI: 10.1109/ICDAR.2013.239.
|
[7] |
Álvaro F, Sánchez J A, Benedı́ J M. Offline features for classifying handwritten math symbols with recurrent neural networks. In Proc. the 2014 IEEE International Conference on Pattern Recognition, August 2014, pp.2944-2949. DOI: 10.1109/ICPR.2014.507.
|
[8] |
Álvaro F, Sánchez J A, Benedı́ J M. An integrated grammar-based approach for mathematical recognition. Pattern Recognition, 2016, 51: 135-147. DOI: 10.1016/j.patcog.2015.09.013.
|
[9] |
Awal A M, Mouchère H, Viard G C. A global learning approach for an online handwritten mathematical recognition system. Pattern Recognition Letter, 2014, 35: 68-77. DOI: 10.1016/j.patrec.2012.10.024.
|
[10] |
Deng Y, Kanervisto A, Ling J, Rush A M. Image-to-markup generation with coarse-to-fine attention. In Proc. the 34th International Conference on Machine Learning, August 2017, pp.980-989.
|
[11] |
Wang J, Du J, Zhang J, Wang Z. Multi-modal attention network for handwritten mathematical recognition. In Proc. the 2019 IEEE International Conference on Document Analysis and Recognition, September 2019, pp.1181-1186. DOI: 10.1109/ICDAR.2019.00191.
|
[12] |
Zhang J, Du J, Dai L. Multi-scale attention with dense encoder for handwritten mathematical recognition. In Proc. the 2018 IEEE International Conference on Pattern Recognition, August 2018, pp.2245-2250. DOI: 10.1109/ICPR.2018.8546031.
|
[13] |
Zhang J, Du J, Dai L. Track, attend and parse (TAP): An end-to-end framework for online handwritten mathematical recognition. IEEE Transactions on Multimedia, 2018, 21(1): 221-233. DOI: 10.1109/TMM.2018.2844689.
|
[14] |
Wu J, Yin F, Zhang Y, Zhang X, Liu C. Image-to-markup generation via paired adversarial learning. In Proc. the European Conference on Machine Learning and Knowledge Discovery in Databases, September 2018, pp.18-34. DOI: 10.1007/978-3-030-10925-7.
|
[15] |
Le A D, Nakagawa M. Training an end-to-end system for handwritten mathematical recognition by generated patterns. In Proc. the 2017 IAPR International Conference on Document Analysis and Recognition, November 2017, pp.1056-1061. DOI: 10.1109/ICDAR.2017.175.
|
[16] |
Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. arXiv:1409.3215, 2014. https://arxiv.org/abs/1409.3215, September 2022.
|
[17] |
Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhutdinov R, Zemel R S, Bengio Y. Show, attend and tell: Neural image caption generation with visual attention. In Proc. the 2015 International Conference on Machine Learning, July 2015, pp.2048-2057.
|
[18] |
Zeng X H, Liu B G, Zhou M. Understanding and generating ultrasound image description. Journal of Computer Science and Technology, 2018, 33(5): 1086-1100. DOI: 10.1007/s11390-018-1874-8.
|
[19] |
Salazer J, Kirchhoff K, Huang Z. Self-attention networks for connectionist temporal classification in speech recognition. In Proc. the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2019, pp.7115-7119. DOI: 10.1109/ICASSP.2019.8682539.
|
[20] |
Luong M T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation. arXiv:1508.04025, 2015. https://arxiv.org/abs/1508.04025, August 2022.
|
[21] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556, September 2022.
|
[22] |
Huang G, Liu Z, Weinberger K Q, Maaten L V D. Densely connected convolutional networks. InProc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.4700-4708. DOI: 10.1109/CVPR.2017.243.
|
[23] |
Simard P Y, Steinkraus D, Platt J C. Best practices for convolutional neural networks applied to visual document analysis. In Proc. the 7th IEEE International Conference on Document Analysis and Recognition, August 2003, pp.958-963. DOI: 10.1109/ICDAR.2003.1227801.
|
[24] |
Zhong Z, Jin L, Xie Z. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps. In Proc. the 13th IEEE International Conference on Document Analysis and Recognition, August 2015, pp.846-850. DOI: 10.1109/ICDAR.2015.7333881.
|
[25] |
Yuan T, Zhu Z, Xu K, Li C, Mu T, Hu S. A large Chinese text dataset in the wild. Journal of the Computer Science and Technology, 2019, 34(3): 509-521. DOI: 10.1007/s11390-019-1923-y.
|
[26] |
Julca-Aguilar F, Mouchère H, Viard-Gaudin C, Hirata N S T. Top-down online handwritten mathematical parsing with graph grammar. In Proc. the Iberoamerican Congress on Pattern Recognition, November 2015, pp.444-451. DOI: 10.1007/978-3-319-25751-8.
|
[27] |
Schuster M, Paliwal K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. DOI: 10.1109/78.650093.
|
[28] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
|
[29] |
Chung J, Gulcehre C, Cho K H, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555, 2014. https://arxiv.org/abs/1, September 2022.
|
[30] |
MacLean S, Labahn G, Lank E, Marzouk S, Tausky D. Grammar-based techniques for creating ground-truthed sketch corpora. International Journal on Document Analysis and Recognition, 2015, 14(1): 65-74. DOI: 10.1007/s10032-010-0118-4.
|
[31] |
Al-Rfou R, Alain G, Almahairi A et al. Theano: A Python framework for fast computation of mathematical s. arXiv: 1605.02688, 2016. https://arxiv.org/abs/1, December, Dec. 2022.
|
[32] |
Zeiler M D. ADADELTA: An adaptive learning rate method. arXiv:1212.5701, 2012. https://arxiv.org/abs/1, September 2022.
|
[33] |
Klakow D, Peters J. Testing the correlation of word error rate and perplexity. Speech Communication, 2002, 38(1/2): 19-28. DOI: 10.1016/S0167-6393(01)00041-3.
|
[34] |
Medress M F, Cooper F S, Forgie J W et al. Speech understanding systems: Report of a steering committee. Artificial Intelligence, 1977, 9(3): 307-316. DOI: 10.1016/0004-3702(77)90026-1.
|
[35] |
Zhang J, Du J, Dai L. A GRU-based encoder-decoder approach with attention for online handwritten mathematical recognition. In Proc. the 2017 IAPR International Conference on Document Analysis and Recognition, November 2017, pp.902-907. DOI: 10.1109/ICDAR.2017.152.
|
[36] |
Zhang X Y, Yin F, Zhang Y M et al. Drawing and recognizing Chinese characters with recurrent neural network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 849-862. DOI: 10.1109/TPAMI.2017.2695539.
|
1. | Vanita Agrawal, Jayant Jagtap, M.V.V. Prasad Kantipudi. Exploration of advancements in handwritten document recognition techniques. Intelligent Systems with Applications, 2024, 22: 200358. DOI:10.1016/j.iswa.2024.200358 |
2. | Everistus Zeluwa Orji, Ali Haydar, İbrahim Erşan, et al. Advancing OCR Accuracy in Image-to-LaTeX Conversion—A Critical and Creative Exploration. Applied Sciences, 2023, 13(22): 12503. DOI:10.3390/app132212503 |
3. | Yu Chen, Fei Gao, Yanguang Zhang, et al. Generating Handwritten Mathematical Expressions From Symbol Graphs: An End-to-End Pipeline. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), DOI:10.1109/CVPR52733.2024.01484 |
4. | Jing Li, Lijuan Duan, Hui Wang, et al. Image Recognition Technology Improves the Efficiency of Historical Drawing Management in Archives. 2024 5th International Conference on Artificial Intelligence and Computer Engineering (ICAICE), DOI:10.1109/ICAICE63571.2024.10864107 |