We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Yu-Jie Yuan, Yukun Lai, Tong Wu, Lin Gao, Li-Gang Liu. A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint[J]. Journal of Computer Science and Technology, 2021, 36(3): 520-554. DOI: 10.1007/s11390-021-1414-9
Citation: Yu-Jie Yuan, Yukun Lai, Tong Wu, Lin Gao, Li-Gang Liu. A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint[J]. Journal of Computer Science and Technology, 2021, 36(3): 520-554. DOI: 10.1007/s11390-021-1414-9

A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint

Funds: This work was supported by the National Natural Science Foundation of China under Grant Nos. 62061136007 and 61872440, the Royal Society Newton Advanced Fellowship under Grant No. NAF\R2\192151, Youth Innovation Promotion Association CAS, and Science and Technology Service Network Initiative, Chinese Academy of Sciences under Grant No. KFJ-STS-QYZD-2021-11-001.
More Information
  • Author Bio:

    Yu-Jie Yuan received his Bachelor's degree in mathematics from Xi'an Jiaotong University, Xi'an, in 2018. He is currently a Ph.D. candidate in the Institute of Computing Technology, Chinese Academy of Sciences, Beijing. His research interests include computer graphics and geometric processing.

  • Corresponding author:

    Lin Gao E-mail: gaolin@ict.ac.cn

  • Received Date: March 01, 2021
  • Revised Date: April 21, 2021
  • Published Date: May 04, 2021
  • 3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy formulation. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which are naturally data-driven. We mainly survey recent research studies from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed.
  • [1]
    Gao L, Yang J, Wu T, Yuan Y J, Fu H, Lai Y K, Zhang H. SDM-NET:Deep generative network for structured deformable mesh. ACM Trans. Graph., 2019, 38(6):Article No. 243. DOI:10.1145/3355089.3356488.
    [2]
    Yang J, Mo K, Lai Y K, Guibas L J, Gao L. DSMNet:Disentangled structured mesh net for controllable generation of fine geometry. arXiv:2008.05440, 2020. https://arxiv.org/abs/2008.05440,Jan.2021.
    [3]
    Chen Z, Zhang H. Learning implicit fields for generative shape modeling. In Proc. the 2019 IEEE Conference on Computer Vision and Pattern Recognition, June 2019, pp.5939-5948. DOI:10.1109/CVPR.2019.00609.
    [4]
    Xu Q, Wang W, Ceylan D, Mech R, Neumann U. DISN:Deep implicit surface network for high-quality single-view 3D reconstruction. In Proc. the 2019 Annual Conference on Neural Information Processing Systems, December 2019, pp.492-502.
    [5]
    Gao L, Zhang L X, Meng H Y, Ren Y H, Lai Y K, Kobbelt L. PRS-Net:Planar reflective symmetry detection net for 3D models. IEEE Transactions on Visualization and Computer Graphics. DOI:10.1109/TVCG.2020.3003823.
    [6]
    Shi Y, Huang J, Zhang H, Xu X, Rusinkiewicz S, Xu K. SymmetryNet:Learning to predict reflectional and rotational symmetries of 3D shapes from single-view RGB-D images. ACM Trans. Graph., 2020, 39(6):Article No. 213. DOI:10.1145/3414685.3417775.
    [7]
    Fu R, Yang J, Sun J, Zhang F L, Lai Y K, Gao L. RISA-Net:Rotation-invariant structure-aware network for fine-grained 3D shape retrieval. arXiv:2010.00973, 2020. https://arxiv.org/abs/2010.00973,Jan.2021.
    [8]
    Xu Z, Zhou Y, Kalogerakis E, Landreth C, Singh K. RigNet:Neural rigging for articulated characters. ACM Trans. Graph., 2020, 39(4):Article No. 58. DOI:10.1145/3386569.3392379.
    [9]
    Chang A X, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H, Xiao J, Yi L, Yu F. ShapeNet:An information-rich 3D model repository. arXiv:1512.03012, 2015. https://arxiv.org/abs/1512.03012,Jan.2021.
    [10]
    Mitra N J, Wand M, Zhang H, Cohen-Or D, Kim V, Huang Q X. Structure-aware shape processing. In Proc. the 2014 ACM SIGGRAPH Courses, July 2014, Article No. 13. DOI:10.1145/2614028.2615401.
    [11]
    Chaudhuri S, Ritchie D, Wu J, Xu K, Zhang H. Learning generative models of 3D structures. Computer Graphics Forum, 2020, 39(2):643-666. DOI:10.1111/cgf.14020.
    [12]
    Han X, Laga H, Bennamoun M. Image-based 3D object reconstruction:State-of-the-art and rends in the deep learning era. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5):1578-1604. DOI:10.1109/TPAMI.2019.2954885.
    [13]
    Jin Y, Jiang D, Cai M. 3D reconstruction using deep learning:A survey. Communications in Information and Systems, 2020, 20(4):389-413. DOI:10.4310/CIS.2020.v20.n4.a1.
    [14]
    Xiao Y P, Lai Y K, Zhang F L, Li C, Gao L. A survey on deep geometry learning:From a representation perspective. Computational Visual Media, 2020, 6(2):113-133. DOI:10.1007/s41095-020-0174-8.
    [15]
    Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(1):213-230. DOI:10.1109/TVCG.2007.1054.
    [16]
    Gain J, Bechmann D. A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph., 2008, 27(4):Article No. 107. DOI:10.1145/1409625.1409629.
    [17]
    Xu K, Kim V G, Huang Q, Mitra N, Kalogerakis E. Datadriven shape analysis and processing. In Proc. the 2016 SIGGRAPH Asia Courses, November 2016, Article No. 4. DOI:10.1145/2988458.2988473.
    [18]
    Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. In Proc. the 14th Annual Conference on Computer Graphics and Interactive Techniques, August 1987, pp.205-214. DOI:10.1145/37401.37427.
    [19]
    Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form shape design. In Proc. the 18th Annual Conference on Computer Graphics and Interactive Techniques, July 1991, pp.257-266. DOI:10.1145/122718.122746.
    [20]
    Welch W, Witkin A. Variational surface modeling. SIGGRAPH Comput. Graph., 1992, 26(2):157-166. DOI:10.1145/142920.134033.
    [21]
    Botsch M, Bommes D, Kobbelt L. Efficient linear system solvers for mesh processing. In Proc. the 11th IMA International Conference on Mathematics of Surfaces, September 2005, pp.62-83. DOI:10.1007/11537908_5.
    [22]
    Shi L, Yu Y, Bell N, Feng W W. A fast multigrid algorithm for mesh deformation. ACM Trans. Graph., 2006, 25(3):1108-1117. DOI:10.1145/1141911.1142001.
    [23]
    Zorin D, Schröder P, Sweldens W. Interactive multiresolution mesh editing. In Proc. the 24th Annual Conference on Computer Graphics and Interactive Techniques, August 1997, pp.259-268. DOI:10.1145/258734.258863.
    [24]
    Kobbelt L, Campagna S, Vorsatz J, Seidel H P. Interactive multi-resolution modeling on arbitrary meshes. In Proc. the 25th Annual Conference on Computer Graphics and Interactive Techniques, July 1998, pp.105-114. DOI:10.1145/280814.280831.
    [25]
    Guskov I, Sweldens W, Schröder P. Multiresolution signal processing for meshes. In Proc. the 26th Annual Conference on Computer Graphics and Interactive Techniques, July 1999, pp.325-334. DOI:10.1145/311535.311577.
    [26]
    Botsch M, Sumner R, Pauly M, Gross M. Deformation transfer for detail-preserving surface editing. In Proc. the 11th International Fall Workshop Vision, Modeling & Visualization, November 2006, pp.357-364.
    [27]
    Botsch M, Kobbelt L. An intuitive framework for real-time freeform modeling. ACM Trans. Graph., 2004, 23(3):630-634. DOI:10.1145/1015706.1015772.
    [28]
    Liu H T D, Jacobson A. Cubic stylization. ACM Trans. Graph., 2019, 38(6):Article No. 197. DOI:10.1145/3355089.3356495.
    [29]
    Sorkine O. Laplacian mesh processing. In Proc. the 26th Annual Conference of the European Association for Computer Graphics, August 29-September 2, 2005, pp.53-70. DOI:10.2312/egst.20051044.
    [30]
    Sorkine O. Differential representations for mesh processing. Computer Graphics Forum, 2006, 25(4):789-807. DOI:10.1111/j.1467-8659.2006.00999.x.
    [31]
    Alexa M. Differential coordinates for local mesh morphing and deformation. The Visual Computer, 2003, 19(2/3):105-114. DOI:10.1007/s00371-002-0180-0.
    [32]
    Sederberg T W, Parry S R. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph., 1986, 20(4):151-160. DOI:10.1145/15886.15903.
    [33]
    Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossi C, Seidel H P. Differential coordinates for interactive mesh editing. In Proc. Shape Modeling Applications, June 2004, pp.181-190. DOI:10.1109/SMI.2004.1314505.
    [34]
    Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel H P. Laplacian surface editing. In Proc. the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, July 2004, pp.175-184. DOI:10.1145/1057432.1057456.
    [35]
    Lipman Y, Sorkine O, Alexa M, Cohen-Or D, Levin D, Rössl C, Seidel H P. Laplacian framework for interactive mesh editing. International Journal of Shape Modeling, 2005, 11(1):43-61. DOI:10.1142/S0218654305000724.
    [36]
    Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H Y. Mesh editing with Poisson-based gradient field manipulation. In Proc. the 2004 ACM SIGGRAPH Papers, August 2004, pp.644-651. DOI:10.1145/1186562.1015774.
    [37]
    Zayer R, Rössl C, Karni Z, Seidel H P. Harmonic guidance for surface deformation. Computer Graphics Forum, 2005, 24(3):601-609. DOI:10.1111/j.1467-8659.2005.00885.x.
    [38]
    Botsch M, Pauly M, Gross M H, Kobbelt L. PriMo:Coupled prisms for intuitive surface modeling. In Proc. the Eurographics Symposium on Geometry Processing, June 2006, pp.11-20. DOI:10.2312/SGP/SGP06/011-020.
    [39]
    Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, Shum H Y. Large mesh deformation using the volumetric graph Laplacian. In Proc. the 2005 ACM SIGGRAPH Papers, July 2005, pp.496-503. DOI:10.1145/1186822.1073219.
    [40]
    Sheffer A, Kraevoy V. Pyramid coordinates for morphing and deformation. In Proc. the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, September 2004, pp.68-75. DOI:10.1109/TDPVT.2004.1335149.
    [41]
    Au O C, Tai C L, Liu L, Fu H. Dual Laplacian editing for meshes. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(3):386-395. DOI:10.1109/TVCG.2006.47.
    [42]
    Fu H, Au O K C, Tai C L. Effective derivation of similarity transformations for implicit Laplacian mesh editing. Computer Graphics Forum, 2007, 26(1):34-45. DOI:10.1111/j.1467-8659.2007.00940.x.
    [43]
    Huang J, Shi X, Liu X, Zhou K, Wei L Y, Teng S H, Bao H, Guo B, Shum H Y. Subspace gradient domain mesh deformation. In Proc. the 2006 ACM SIGGRAPH Papers, July 2006, pp.1126-1134. DOI:10.1145/1179352.1142003.
    [44]
    Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. In Proc. the 2005 ACM SIGGRAPH Papers, July 2005, pp.561-566. DOI:10.1145/1186822.1073229.
    [45]
    Vallet B, Lévy B. Spectral geometry processing with manifold harmonics. Computer Graphics Forum, 2008, 27(2):251-260. DOI:10.1111/j.1467-8659.2008.01122.x.
    [46]
    Alexa M, Cohen-Or D, Levin D. As-rigid-as-possible shape interpolation. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.157-164. DOI:10.1145/344779.344859.
    [47]
    Igarashi T, Moscovich T, Hughes J F. As-rigid-as-possible shape manipulation. ACM Trans. Graph., 2005, 24(3):1134-1141. DOI:10.1145/1073204.1073323.
    [48]
    Sorkine O, Alexa M. As-rigid-as-possible surface modeling. In Proc. the 5th Eurographics Symposium on Geometry Processing, July 2007, pp.109-116. DOI:10.2312/SGP/SGP07/109-116.
    [49]
    Chao I, Pinkall U, Sanan P, Schröder P. A simple geometric model for elastic deformations. ACM Trans. Graph., 2010, 29(4):Article No. 38. DOI:10.1145/1778765.1778775.
    [50]
    Levi Z, Gotsman C. Smooth rotation enhanced as-rigid-aspossible mesh animation. IEEE Transactions on Visualization and Computer Graphics, 2014, 21(2):264-277. DOI:10.1109/TVCG.2014.2359463.
    [51]
    Cuno A, Esperança C, Oliveira A, Cavalcanti P R. 3D as-rigid-as-possible deformations using MLS. In Proc. the 27th Computer Graphics International Conference, May 30-June 2, 2007, pp.115-122.
    [52]
    Liu Y S, Yan H B, Martin R R. As-rigid-as-possible surface morphing. Journal of Computer Science and Technology, 2011, 26(3):548-557. DOI:10.1007/s11390-011-1154-3.
    [53]
    Chen S Y, Gao L, Lai Y K, Xia S. Rigidity controllable as-rigid-as-possible shape deformation. Graphical Models, 2017, 91:13-21. DOI:10.1016/j.gmod.2017.02.005.
    [54]
    Qin X, Wu T, Liu Y. A surface deformation method based on stiffness control. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2020, 14(1):Article No. JAMDSM0010. DOI:10.1299/jamdsm.2020jamdsm0010.
    [55]
    Le Vaou Y, Léon J C, Hahmann S, Masfrand S, Mika M. As-stiff-as-needed surface deformation combining ARAP energy with an anisotropic material. ComputerAided Design, 2020, 121:Article No. 102803. DOI:10.1016/j.cad.2019.102803.
    [56]
    Colaianni M, Siegl C, Süßmuth J, Bauer F, Greiner G. Anisotropic surface based deformation. In Proc. the 2016 SIGGRAPH ASIA Technical Briefs, November 2016, Article No. 1. DOI:10.1145/3005358.3005361.
    [57]
    Colaianni M, Siegl C, Süßmuth J, Bauer F, Greiner G. Anisotropic deformation for local shape control. Computational Visual Media, 2017, 3(4):305-313. DOI:10.1007/s41095-017-0092-6.
    [58]
    Borosán P, Howard R, Zhang S, Nealen A. Hybrid mesh editing. In Proc. the 31st Annual Conference of the European Association for Computer Graphics, May 2010, pp.41-44. DOI:10.2312/egsh.20101043.
    [59]
    Sun Q, Wan W, Feng X, Chen G, Rizwan M, Sánchez J A. Bi-harmonic surface based as-rigid-as-possible mesh deformation. Journal of Computers, 2018, 29(4):161-175. DOI:10.3966/199115992018082904013.
    [60]
    Zollhöfer M, Sert E, Greiner G, Süßmuth J. GPU based ARAP deformation using volumetric lattices. In Proc. the 33rd Annual Conference of the European Association for Computer Graphics, May 2012, pp.85-88. DOI:0.2312/conf/EG2012/short/085-088.
    [61]
    Manson J, Schaefer S. Hierarchical deformation of locally rigid meshes. Computer Graphics Forum, 2011, 30(8):2387-2396. DOI:10.1111/j.1467-8659.2011.02074.x.
    [62]
    Kovalsky S Z, Galun M, Lipman Y. Accelerated quadratic proxy for geometric optimization. ACM Trans. Graph., 2016, 35(4):Article No. 134. DOI:10.1145/2897824.2925920.
    [63]
    Peng Y, Deng B, Zhang J, Geng F, Qin W, Liu L. Anderson acceleration for geometry optimization and physics simulation. ACM Trans. Graph., 2018, 37(4):Article No. 42. DOI:10.1145/3197517.3201290.
    [64]
    Rabinovich M, Poranne R, Panozzo D, Sorkine-Hornung O. Scalable locally injective mappings. ACM Trans. Graph., 2017, 36(4):Article No. 16. DOI:10.1145/2983621.
    [65]
    Shtengel A, Poranne R, Sorkine-Hornung O, Kovalsky S Z, Lipman Y. Geometric optimization via composite majorization. ACM Trans. Graph., 2017, 36(4):Article No. 38. DOI:10.1145/3072959.3073618.
    [66]
    Zhu Y, Bridson R, Kaufman D M. Blended cured quasiNewton for distortion optimization. ACM Trans. Graph., 2018, 37(4):Article No. 40. DOI:10.1145/3197517.3201359.
    [67]
    Zhang S, Nealen A, Metaxas D N. Skeleton based as-rigid-as-possible volume modeling. In Proc. the 31st Annual Conference of the European Association for Computer Graphics, May 2010, pp.21-24. DOI:10.2312/egsh.20101038.
    [68]
    Zhang S, Huang J, Metaxas D N. Robust mesh editing using Laplacian coordinates. Graphical Models, 2011, 73(1):10-19. DOI:10.1016/j.gmod.2010.10.003.
    [69]
    Jacobson A, Baran I, Kavan L, Popović J, Sorkine O. Fast automatic skinning transformations. ACM Trans. Graph., 2012, 31(4):Article No. 77. DOI:10.1145/2185520.2185573.
    [70]
    Yang J, Gao L, Lai Y K, Rosin P L, Xia S. Biharmonic deformation transfer with automatic key point selection. Graphical Models, 2018, 98:1-13. DOI:10.1016/j.gmod.2018.05.003.
    [71]
    Gao L, Lai Y K, Yang J, Zhang L X, Xia S, Kobbelt L. Sparse data driven mesh deformation. IEEE Transactions on Visualization and Computer Graphics, 2019, 27(3):2085-2100. DOI:10.1109/TVCG.2019.2941200.
    [72]
    Liu L, Zhang L, Xu Y, Gotsman C, Gortler S J. A local/global approach to mesh parameterization. Computer Graphics Forum, 2008, 27(5):1495-1504. DOI:10.1111/j.1467-8659.2008.01290.x.
    [73]
    Gao L, Lai Y K, Huang Q X, Hu S M. A data-driven approach to realistic shape morphing. Computer Graphics Forum, 2013, 32(2):449-457. DOI:10.1111/cgf.12065.
    [74]
    Bouaziz S, Deuss M, Schwartzburg Y, Weise T, Pauly M. Shape-up:Shaping discrete geometry with projections. Computer Graphics Forum, 2012, 31(5):1657-1667. DOI:10.1111/j.1467-8659.2012.03171.x.
    [75]
    Huang Q X, Wicke M, Adams B, Guibas L. Shape decomposition using modal analysis. Computer Graphics Forum, 2009, 28(2):407-416. DOI:10.1111/j.1467-8659.2009.01380.x.
    [76]
    Liu T, Bargteil A W, O'Brien J F, Kavan L. Fast simulation of mass-spring systems. ACM Trans. Graph., 2013, 32(6):Article No. 214. DOI:10.1145/2508363.2508406.
    [77]
    Levi Z, Gotsman C. D-snake:Image registration by assimilar-as-possible template deformation. IEEE Transactions on Visualization and Computer Graphics, 2012, 19(2):331-343. DOI:10.1109/TVCG.2012.134.
    [78]
    Sỳkora D, Dingliana J, Collins S. As-rigid-as-possible image registration for hand-drawn cartoon animations. In Proc. the 7th International Symposium on Non-Photorealistic Animation and Rendering, August 2009, pp.25-33. DOI:10.1145/1572614.1572619.
    [79]
    Fadaifard H, Wolberg G. Image warping for retargeting garments among arbitrary poses. The Visual Computer, 2013, 29(6/7/8):525-534. DOI:10.1007/s00371-013-0816-2.
    [80]
    Wang Y S, Liu F, Hsu P S, Lee T Y. Spatially and temporally optimized video stabilization. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(8):1354-1361. DOI:10.1109/TVCG.2013.11.
    [81]
    Crane K, Pinkall U, Schröder P. Spin transformations of discrete surfaces. In Proc. the 2011 ACM SIGGRAPH Papers, July 2011, Article No. 104. DOI:10.1145/1964921.1964999.
    [82]
    Fang Q, Zhao Z Y, Liu Z Y, Liu L, Fu X M. Metric first reconstruction for interactive curvature-aware modeling. Computer-Aided Design, 2020, 126:Article No. 102863. DOI:10.1016/j.cad.2020.102863.
    [83]
    Lai Y K, Zhou Q Y, Hu S M, Wallner J, Pottmann H. Robust feature classification and editing. IEEE Transactions on Visualization and Computer Graphics, 2006, 13(1):34-45. DOI:10.1109/TVCG.2007.19.
    [84]
    Lipman Y, Cohen-Or D, Gal R, Levin D. Volume and shape preservation via moving frame manipulation. ACM Trans. Graph., 2007, 26(1):Article No. 5. DOI:10.1145/1189762.1189767.
    [85]
    Alhashim I, Zhang H, Liu L. Detail-replicating shape stretching. The Visual Computer, 2012, 28(12):1153-1166. DOI:10.1007/s00371-011-0665-9.
    [86]
    Au O K C, Tai C L, Chu H K, Cohen-Or D, Lee T Y. Skeleton extraction by mesh contraction. ACM Trans. Graph., 2008, 27(3):Article No. 44. DOI:10.1145/1360612.1360643.
    [87]
    Liu Z, Wang W M, Liu X P, Liu L G. Scale-aware shape manipulation. Journal of Zhejiang University SCIENCE C, 2014, 15(9):764-775. DOI:10.1631/jzus.C1400122.
    [88]
    Xu L, Wang R, Zhang J, Yang Z, Deng J, Chen F, Liu L. Survey on sparsity in geometric modeling and processing. Graphical Models, 2015, 82:160-180. DOI:10.1016/j.gmod.2015.06.012.
    [89]
    Gao L, Zhang G, Lai Y. Lp shape deformation. Science China Information Sciences, 2012, 55(5):983-993. DOI:10.1007/s11432-012-4574-y.
    [90]
    Deng B, Bouaziz S, Deuss M, Zhang J, Schwartzburg Y, Pauly M. Exploring local modifications for constrained meshes. Computer Graphics Forum, 2013, 32(2pt1):11-20. DOI:10.1111/cgf.12021.
    [91]
    Museth K, Breen D E, Whitaker R T, Barr A H. Level set surface editing operators. In Proc. the 29th Annual Conference on Computer Graphics and Interactive Techniques, July 2002, pp.330-338. DOI:10.1145/566570.566585.
    [92]
    Eyiyurekli M, Breen D E. Detail-preserving level set surface editing and geometric texture transfer. Graphical Models, 2017, 93:39-52. DOI:10.1016/j.gmod.2017.08.002.
    [93]
    Coquillart S. Extended free-form deformation:A sculpturing tool for 3D geometric modeling. In Proc. the 17th Annual Conference on Computer Graphics and Interactive Techniques, September 1990, pp.187-196. DOI:10.1145/97879.97900.
    [94]
    Kraevoy V, Sheffer A, Shamir A, Cohen-Or D. Nonhomogeneous resizing of complex models. ACM Trans. Graph., 2008, 27(5):Article No. 111. DOI:10.1145/1409060.1409064.
    [95]
    Xu W, Wang J, Yin K, Zhou K, Van De Panne M, Chen F, Guo B. Joint-aware manipulation of deformable models. ACM Trans. Graph., 2009, 28(3):Article No. 35. DOI:10.1145/1531326.1531341.
    [96]
    Gal R, Sorkine O, Mitra N J, Cohen-Or D. iWIRES:An analyze-and-edit approach to shape manipulation. In Proc. the 2009 ACM SIGGRAPH Papers, July 2009, Article No. 33. DOI:10.1145/1576246.1531339.
    [97]
    Li G, Liu L, Zheng H, Mitra N J. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph., 2010, 29(6):Article No. 152. DOI:10.1145/1882261.1866178.
    [98]
    Zheng Y, Fu H, Cohen-Or D, Au O K C, Tai C L. Component-wise controllers for structure-preserving shape manipulation. Computer Graphics Forum, 2011, 30(2):563-572. DOI:10.1111/j.1467-8659.2011.01880.x.
    [99]
    Xu K, Zheng H, Zhang H, Cohen-Or D, Liu L, Xiong Y. Photo-inspired model-driven 3D object modeling. ACM Trans. Graph., 2011, 30(4):Article No. 80. DOI:10.1145/2010324.1964975.
    [100]
    Zhang C, Yang L, Xu L, Wang G, Wang W. Real-time editing of man-made mesh models under geometric constraints. Computers & Graphics, 2019, 82:174-182. DOI:10.1016/j.cag.2019.05.028.
    [101]
    Bokeloh M, Wand M, Koltun V, Seidel H P. Patternaware shape deformation using sliding dockers. In Proc. the 2011 SIGGRAPH Asia Conference, December 2011, Article No. 123. DOI:10.1145/2024156.2024157.
    [102]
    Bokeloh M, Wand M, Seidel H P, Koltun V. An algebraic model for parameterized shape editing. ACM Trans. Graph., 2012, 31(4):Article No. 78. DOI:10.1145/2185520.2185574.
    [103]
    Lin J, Cohen-Or D, Zhang H, Liang C, Sharf A, Deussen O, Chen B. Structure-preserving retargeting of irregular 3D architecture. ACM Trans. Graph., 2011, 30(6):Article No. 183. DOI:10.1145/2070781.2024217.
    [104]
    Milliez A, Wand M, Cani M P, Seidel H P. Mutable elastic models for sculpting structured shapes. Computer Graphics Forum, 2013, 32(2pt1):21-30. DOI:10.1111/cgf.12022.
    [105]
    Habbecke M, Kobbelt L. Linear analysis of nonlinear constraints for interactive geometric modeling. Computer Graphics Forum, 2012, 31(2pt3):641-650. DOI:10.1111/j.1467-8659.2012.03043.x.
    [106]
    Cabral M, Lefebvre S, Dachsbacher C, Drettakis G. Structure-preserving reshape for textured architectural scenes. Computer Graphics Forum, 2009, 28(2):469-480. DOI:10.1111/j.1467-8659.2009.01386.x.
    [107]
    Tagliasacchi A, Delame T, Spagnuolo M, Amenta N, Telea A. 3D skeletons:A state-of-the-art report. Computer Graphics Forum, 2016, 35(2):573-597. DOI:10.1111/cgf.12865.
    [108]
    Magnenat-Thalmann N, Laperrière R, Thalmann D. Jointdependent local deformations for hand animation and object grasping. In Proc. the 14th Graphics Interface Conference, June 1988, pp.26-33. DOI:10.20380/GI1988.04.
    [109]
    Bang S, Lee S H. Spline interface for intuitive skinning weight editing. ACM Trans. Graph., 2018, 37(5):Article No. 174. DOI:10.1145/3186565.
    [110]
    Baran I, Popović J. Automatic rigging and animation of 3D characters. ACM Trans. Graph., 2007, 26(3):Article No. 72. DOI:10.1145/1276377.1276467.
    [111]
    Wareham R, Lasenby J. Bone glow:An improved method for the assignment of weights for mesh deformation. In Proc. the 5th International Conference on Articulated Motion and Deformable Objects, July 2008, pp.63-71. DOI:10.1007/978-3-540-70517-8_7.
    [112]
    Jacobson A, Baran I, Popovic J, Sorkine O. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph., 2011, 30(4):Article No. 78. DOI:10.1145/2010324.1964973.
    [113]
    Jacobson A, Weinkauf T, Sorkine O. Smooth shapeaware functions with controlled extrema. Computer Graphics Forum, 2012, 31(5):1577-1586. DOI:10.1111/j.1467-8659.2012.03163.x.
    [114]
    Yuan Y J, Lai Y K, Wu T, Xia S, Gao L. Datadriven weight optimization for real-time mesh deformation. Graphical Models, 2019, 104:Article No. 101037. DOI:10.1016/j.gmod.2019.101037.
    [115]
    Dionne O, Lasa M. Geodesic voxel binding for production character meshes. In Proc. the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2013, pp.173-180. DOI:10.1145/2485895.2485919.
    [116]
    Dionne O, De Lasa M. Geodesic binding for degenerate character geometry using sparse voxelization. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(10):1367-1378. DOI:10.1109/TVCG.2014.2321563.
    [117]
    Yan H B, Hu S M, Martin R. Skeleton-based shape deformation using simplex transformations. In Proc. the 24th Computer Graphics International Conference, June 2006, pp.66-77. DOI:10.1007/11784203_6.
    [118]
    Yan H B, Hu S, Martin R R, Yang Y L. Shape deformation using a skeleton to drive simplex transformations. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(3):693-706. DOI:10.1109/TVCG.2008.28.
    [119]
    Lewis J P, Cordner M, Fong N. Pose space deformation:A unified approach to shape interpolation and skeletondriven deformation. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.165-172. DOI:10.1145/344779.344862.
    [120]
    Mohr A, Gleicher M. Building efficient, accurate character skins from examples. ACM Trans. Graph., 2003, 22(3):562-568. DOI:10.1145/882262.882308.
    [121]
    Wang R Y, Pulli K, Popović J. Real-time enveloping with rotational regression. In Proc. the 2007 ACM SIGGRAPH Papers, July 2007, Article No. 73. DOI:10.1145/1275808.1276468.
    [122]
    Chen C H, Lin I C, Tsai M H, Lu P H. Latticebased skinning and deformation for real-time skeletondriven animation. In Proc. the 12th International Conference on Computer-Aided Design and Computer Graphics, September 2011, pp.306-312. DOI:10.1109/CAD/Graphics.2011.41.
    [123]
    Abu Rumman N, Fratarcangeli M. Position-based skinning for soft articulated characters. Computer Graphics Forum, 2015, 34(6):240-250. DOI:10.1111/cgf.12533.
    [124]
    Weber O, Sorkine O, Lipman Y, Gotsman C. Contextaware skeletal shape deformation. Computer Graphics Forum, 2007, 26(3):265-274. DOI:10.1111/j.1467-8659.2007.01048.x.
    [125]
    Shi X, Zhou K, Tong Y, Desbrun M, Bao H, Guo B. Example-based dynamic skinning in real time. ACM Trans. Graph., 2008, 27(3):Article No. 29. DOI:10.1145/1399504.1360628.
    [126]
    Kavan L, Collins S, Žára J, O'Sullivan C. Skinning with dual quaternions. In Proc. the 2007 Symposium on Interactive 3D Graphics and Games, April 30-May 2, 2007, pp.39-46. DOI:10.1145/1230100.1230107.
    [127]
    Kavan L, Collins S, Žára J, O'Sullivan C. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph., 2008, 27(4):Article No. 105. DOI:10.1145/1409625.1409627.
    [128]
    Kavan L, Collins S, O'Sullivan C. Automatic linearization of nonlinear skinning. In Proc. the 2009 Symposium on Interactive 3D Graphics and Games, February 27-March 1, 2009, pp.49-56. DOI:10.1145/1507149.1507157.
    [129]
    Alexa M. Linear combination of transformations. ACM Trans. Graph., 2002, 21(3):380-387. DOI:10.1145/566654.566592.
    [130]
    Magnenat-Thalmann N, Cordier F, Seo H, Papagianakis G. Modeling of bodies and clothes for virtual environments. In Proc. the 3rd International Conference on Cyberworlds, November 2004, pp.201-208. DOI:10.1109/CW.2004.47.
    [131]
    Kavan L, Žára J. Spherical blend skinning:A real-time deformation of articulated models. In Proc. the 2005 Symposium on Interactive 3D Graphics and Games, April 2005, pp.9-16. DOI:10.1145/1053427.1053429.
    [132]
    Le B H, Hodgins J K. Real-time skeletal skinning with optimized centers of rotation. ACM Trans. Graph., 2016, 35(4):Article No. 37. DOI:10.1145/2897824.2925959.
    [133]
    Kim Y, Han J. Bulging-free dual quaternion skinning. Computer Animation and Virtual Worlds, 2014, 25(3/4):321-329. DOI:10.1002/cav.1604.
    [134]
    Forstmann S, Ohya J. Fast skeletal animation by skinned arc-spline based deformation. In Proc. the 27th Annual Conference of the European Association for Computer Graphics, September 2006, pp.1-4. DOI:10.2312/egs.20061014.
    [135]
    Forstmann S, Ohya J, Krohn-Grimberghe A, McDougall R. Deformation styles for spline-based skeletal animation. In Proc. the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, August 2007, pp.141-150. DOI:10.2312/SCA/SCA07/141-150.
    [136]
    Yang X, Somasekharan A, Zhang J J. Curve skeleton skinning for human and creature characters. Computer Animation and Virtual Worlds, 2006, 17(3/4):281-292. DOI:10.1002/cav.132.
    [137]
    Öztireli A C, Baran I, Popa T, Dalstein B, Sumner R W, Gross M. Differential blending for expressive sketch-based posing. In Proc. the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2013, pp.155-164. DOI:10.1145/2485895.2485916.
    [138]
    Wang X C, Phillips C. Multi-weight enveloping:Leastsquares approximation techniques for skin animation. In Proc. the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2002, pp.129-138. DOI:10.1145/545261.545283.
    [139]
    Merry B, Marais P, Gain J. Animation space:A truly linear framework for character animation. ACM Trans. Graph., 2006, 25(4):1400-1423. DOI:10.1145/1183287.1183294.
  • Others

  • Cited by

    Periodical cited type(17)

    1. Ardian Umam, Cheng-Kun Yang, Jen-Hui Chuang, et al. Unsupervised Point Cloud Co-Part Segmentation via Co-Attended Superpoint Generation and Aggregation. IEEE Transactions on Multimedia, 2024, 26: 7775. DOI:10.1109/TMM.2024.3371294
    2. Filip Hácha, Jan Dvořák, Zuzana Káčereková, et al. Editing mesh sequences with varying connectivity. Computers & Graphics, 2024, 121: 103943. DOI:10.1016/j.cag.2024.103943
    3. Chengwei Zheng, Wenbin Lin, Feng Xu. EditableNeRF: Editing Topologically Varying Neural Radiance Fields by Key Points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5779. DOI:10.1109/TPAMI.2024.3366148
    4. Jing Li, Juyong Zhang, Falai Chen. iShapEditing: Intelligent Shape Editing with Diffusion Models. Computer Graphics Forum, 2024. DOI:10.1111/cgf.15253
    5. Clément Jambon, Bernhard Kerbl, Georgios Kopanas, et al. NeRFshop. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2023, 6(1): 1. DOI:10.1145/3585499
    6. Zhonghao Cao, Pengfei Xu, Zhuoyue Chen, et al. Screen space shape manipulation by global structural optimization. Computers & Graphics, 2023, 115: 246. DOI:10.1016/j.cag.2023.07.017
    7. Jie Yang, Kaichun Mo, Yu-Kun Lai, et al. DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape Generation. ACM Transactions on Graphics, 2023, 42(1): 1. DOI:10.1145/3526212
    8. Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, et al. Interactive NeRF Geometry Editing With Shape Priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 14821. DOI:10.1109/TPAMI.2023.3315068
    9. Yuhan Wu, Nobuyuki Umetani. Two-Way Coupling of Skinning Transformations and Position Based Dynamics. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2023, 6(3): 1. DOI:10.1145/3606930
    10. Lin Gao, Tong Wu, Yu-Jie Yuan, et al. TM-NET. ACM Transactions on Graphics, 2021, 40(6): 1. DOI:10.1145/3478513.3480503
    11. Sanjeev Muralikrishnan, Siddhartha Chaudhuri, Noam Aigerman, et al. GLASS: Geometric Latent Augmentation for Shape Spaces. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), DOI:10.1109/CVPR52688.2022.01800
    12. Uday Kusupati, Mathieu Gaillard, Jean-Marc Thiery, et al. Semantic Shape Editing with Parametric Implicit Templates. Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24, DOI:10.1145/3641519.3657421
    13. Zhicheng Liu, Linzhou Li, Feng Tian, et al. Lightweight Web3D Crowd Rendering for Online Massive Conferencing. 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), DOI:10.1109/ISMAR-Adjunct57072.2022.00113
    14. Ardian Umam, Cheng-Kun Yang, Min-Hung Chen, et al. PartDistill: 3D Shape Part Segmentation by Vision-Language Model Distillation. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), DOI:10.1109/CVPR52733.2024.00333
    15. Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, et al. NeRF-Editing: Geometry Editing of Neural Radiance Fields. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), DOI:10.1109/CVPR52688.2022.01781
    16. Chengwei Zheng, Wenbin Lin, Feng Xu. EditableNeRF: Editing Topologically Varying Neural Radiance Fields by Key Points. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), DOI:10.1109/CVPR52729.2023.00804
    17. Jun-Kun Chen, Jipeng Lyu, Yu-Xiong Wang. NeuralEditor: Editing Neural Radiance Fields via Manipulating Point Clouds. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), DOI:10.1109/CVPR52729.2023.01197

    Other cited types(0)

Catalog

    Article views (81) PDF downloads (0) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return