The Paradigm of Power Bounded High-Performance Computing
-
Abstract
Modern computer systems are increasingly bounded by the available or permissible power at multiple layers from individual components to data centers. To cope with this reality, it is necessary to understand how power bounds impact performance, especially for systems built from high-end nodes, each consisting of multiple power hungry components. Because placing an inappropriate power bound on a node or a component can lead to severe performance loss, coordinating power allocation among nodes and components is mandatory to achieve desired performance given a total power budget. In this article, we describe the paradigm of power bounded high-performance computing, which considers coordinated power bound assignment to be a key factor in computer system performance analysis and optimization. We apply this paradigm to the problem of power coordination across multiple layers for both CPU and GPU computing. Using several case studies, we demonstrate how the principles of balanced power coordination can be applied and adapted to the interplay of workloads, hardware technology, and the available total power for performance improvement.
-
-