SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Xing YX, Tan HW, Xu YN et al. A tiny example based procedural model for real-time glinty appearance rendering. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(4): 771−784 July 2024. DOI: 10.1007/s11390-024-4123-3. |
The glinty details from complex microstructures significantly enhance rendering realism. However, the previous methods use high-resolution normal maps to define each micro-geometry, which requires huge memory overhead. This paper observes that many self-similarity materials have independent structural characteristics, which we define as tiny example microstructures. We propose a procedural model to represent microstructures implicitly by performing spatial transformations and spatial distribution on tiny examples. Furthermore, we precompute normal distribution functions (NDFs) by 4D Gaussians for tiny examples and store them in multi-scale NDF maps. Combined with a tiny example based NDF evaluation method, complex glinty surfaces can be rendered simply by texture sampling. The experimental results show that our tiny example based the microstructure rendering method is GPU-friendly, successfully reproducing high-frequency reflection features of different microstructures in real time with low memory and computational overhead.
[1] |
Yan L Q, Hašan M, Marschner S, Ramamoorthi R. Position-normal distributions for efficient rendering of specular microstructure. ACM Trans. Graphics, 2016, 35(4): Article No. 56. DOI: 10.1145/2897824.2925915.
|
[2] |
Zhu J Q, Xu Y N, Wang L. A stationary SVBRDF material modeling method based on discrete microsurface. Computer Graphics Forum, 2019, 38(7): 745–754. DOI: 10. 1111/cgf.13876.
|
[3] |
Wang B B, Hašan M, Holzschuch N, Yan L Q. Example-based microstructure rendering with constant storage. ACM Trans. Graphics, 2020, 39(5): Article No. 162. DOI: 10.1145/3406836.
|
[4] |
Tan H W, Zhu J Q, Xu Y N, Meng X X, Wang L, Yan L Q. Real-time microstructure rendering with MIP-mapped normal map samples. Computer Graphics Forum, 2022, 41(1): 495–506. DOI: 10.1111/cgf.14448.
|
[5] |
Yan L Q, Hašan M, Jakob W, Lawrence J, Marschner S, Ramamoorthi R. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graphics, 2014, 33(4): 116. DOI: 10.1145/2601097.2601155.
|
[6] |
Chermain X, Claux F, Mérillou S. Glint rendering based on a multiple-scattering patch BRDF. Computer Graphics Forum, 2019, 38(4): 27–37. DOI: 10.1111/cgf.13767.
|
[7] |
Yan L Q, Hašan M, Walter B, Marschner S, Ramamoorthi R. Rendering specular microgeometry with wave optics. ACM Trans. Graphics, 2018, 37(4): 75. DOI: 10.1145/3197517.3201351.
|
[8] |
Guo J, Chen Y J, Guo Y W, Pan J G. A physically-based appearance model for special effect pigments. Computer Graphics Forum, 2018, 37(4): 67–76. DOI: 10.1111/cgf.13476.
|
[9] |
Xia M Q, Walter B, Hery C, Maury O, Michielssen E, Marschner S. A practical wave optics reflection model for hair and fur. ACM Trans. Graphics, 2023, 42(4): Article No. 39. DOI: 10.1145/3592446.
|
[10] |
Yu Y C, Xia M Q, Walter B, Michielssen E, Marschner S. A full-wave reference simulator for computing surface reflectance. ACM Trans. Graphics, 2023, 42(4): 109. DOI: 10. 1145/3592414.
|
[11] |
Zhu J Q, Zhao S Z, Xu Y N, Meng X X, Wang L, Yan L Q. Recent advances in glinty appearance rendering. Computational Visual Media, 2022, 8(4): 535–552. DOI: 10.1007/s41095-022-0280-x.
|
[12] |
Gamboa L E, Guertin J P, Nowrouzezahrai D. Scalable appearance filtering for complex lighting effects. ACM Trans. Graphics, 2018, 37(6): Article No. 277. DOI: 10.1145/3272127.3275058.
|
[13] |
Atanasov A, Wilkie A, Koylazov V, Křivánek J. A multiscale microfacet model based on inverse bin mapping. Computer Graphics Forum, 2021, 40(2): 103–113. DOI: 10.1111/cgf.142618.
|
[14] |
Fan J H, Wang B B, Wu W S, Hašan M, Yang J, Yan L Q. Efficient specular glints rendering with differentiable regularization. IEEE Trans. Visualization and Computer Graphics, 2023, 29(6): 2940–2949. DOI: 10.1109/TVCG.2022.3144479.
|
[15] |
Jakob W, Hašan M, Yan L Q, Lawrence J, Ramamoorthi R, Marschner S. Discrete stochastic microfacet models. ACM Trans. Graphics, 2014, 33(4): Article No. 115. DOI: 10.1145/2601097.2601186.
|
[16] |
Atanasov A, Koylazov V. A practical stochastic algorithm for rendering mirror-like flakes. In Proc. the 2016 ACM SIGGRAPH Talks, Jul. 2016, Article No. 67. DOI: 10.1145/2897839.2927391.
|
[17] |
Wang B B, Wang L, Holzschuch N. Fast global illumination with discrete stochastic microfacets using a filterable model. Computer Graphics Forum, 2018, 37(7): 55–64. DOI: 10.1111/cgf.13547.
|
[18] |
Raymond B, Guennebaud G, Barla P. Multi-scale rendering of scratched materials using a structured SV-BRDF model. ACM Trans. Graphics, 2016, 35(4): Article No. 57. DOI: 10.1145/2897824.2925945.
|
[19] |
Werner S, Velinov Z, Jakob W, Hullin M B. Scratch iridescence: Wave-optical rendering of diffractive surface structure. ACM Trans. Graphics, 2017, 36(6): Article No. 207. DOI: 10.1145/3130800.3130840.
|
[20] |
Deng H, Liu Y, Wang B B, Yang J, Ma L, Holzschuch N, Yan L Q. Constant-cost spatio-angular prefiltering of glinty appearance using tensor decomposition. ACM Trans. Graphics, 2022, 41(2): Article No. 22. DOI: 10.1145/3507915.
|
[21] |
Kuznetsov A, Hašan M, Xu Z X, Yan L Q, Walter B, Kalantari N K, Marschner S, Ramamoorthi R. Learning generative models for rendering specular microgeometry. ACM Trans. Graphics, 2019, 38(6): Article No. 225. DOI: 10.1145/3355089.3356525.
|
[22] |
Guo Y, Hašan M, Yan L, Zhao S. A Bayesian inference framework for procedural material parameter estimation. Computer Graphics Forum, 2020, 39(7): 255–266. DOI: 10.1111/cgf.14142.
|
[23] |
Zirr T, Kaplanyan A S. Real-time rendering of procedural multiscale materials. In Proc. the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Feb. 2016, pp.139–148. DOI: 10.1145/2856400.2856409.
|
[24] |
Deliot T, Belcour L. Real-time rendering of glinty appearances using distributed binomial laws on anisotropic grids. Computer Graphics Forum, 2023, 42(8): e14866. DOI: 10.1111/cgf.14866.
|
[25] |
Chermain X, Sauvage B, Dischler J M, Dachsbacher C. Procedural physically based BRDF for real-time rendering of glints. Computer Graphics Forum, 2020, 39(7): 243–253. DOI: 10.1111/cgf.14141.
|
[26] |
Chermain X, Lucas S, Sauvage B, Dischler J M, Dachsbacher C. Real-time geometric glint anti-aliasing with normal map filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2021, 4(1): Article No. 1. DOI: 10.1145/3451257.
|
[27] |
Cook R L, Torrance K E. A reflectance model for computer graphics. ACM Trans. Graphics, 1982, 1(1): 7–24. DOI: 10.1145/357290.357293.
|
[28] |
Wang B B, Deng H, Holzschuch N. Real-time glints rendering with pre-filtered discrete stochastic microfacets. Computer Graphics Forum, 2020, 39(6): 144–154. DOI: 10.1111/cgf.14007.
|
[29] |
Velinov Z, Werner S, Hullin M B. Real-time rendering of wave-optical effects on scratched surfaces. Computer Graphics Forum, 2018, 37(2): 123–134. DOI: 10.1111/cgf.13347.
|
[30] |
Walter B, Marschner S R, Li H S, Torrance K E. Microfacet models for refraction through rough surfaces. In Proc. the 18th Eurographics Conference on Rendering Techniques, Jun. 2007, pp.195–206. DOI: 10.5555/2383847.2383874.
|
[31] |
Heckbert P S. Fundamentals of texture mapping and image warping. Technical Report UCB/CSD-89-516, University of California, 1989.
|
[32] |
Shen P F, Li R Z, Wang B B, Liu L G. Scratch-based reflection art via differentiable rendering. ACM Trans. Graphics, 2023, 42(4): 65. DOI: 10.1145/3592142.
|
[1] | Ming-Cong Ma, Lu Wang, Yan-Ning Xu, Xiang-Xu Meng. Unsupervised Reconstruction for Gradient-Domain Rendering with Illumination Separation[J]. Journal of Computer Science and Technology, 2024, 39(6): 1281-1291. DOI: 10.1007/s11390-024-3142-4 |
[2] | Chun-Meng Kang, Lu Wang, Yan-Ning Xu, Xiang-Xu Meng, Yuan-Jie Song. Adaptive Photon Mapping Based on Gradient[J]. Journal of Computer Science and Technology, 2016, 31(1): 217-224. DOI: 10.1007/s11390-016-1622-x |
[3] | Yu Zang, Hua Huang, Chen-Feng Li. Stroke Style Analysis for Painterly Rendering[J]. Journal of Computer Science and Technology, 2013, 28(5): 762-775. DOI: 10.1007/s11390-013-1375-8 |
[4] | Xiao-Hui Liang, Shang Ma, Li-Xia Cen, Zhuo Yu. Light Space Cascaded Shadow Maps Algorithm for Real Time Rendering[J]. Journal of Computer Science and Technology, 2011, 26(1): 176-186. DOI: 10.1007/s11390-011-1120-0 |
[5] | Jun Teng, Marc Jaeger, Bao-Gang Hu. A Fast Ambient Occlusion Method for Real-Time Plant Rendering[J]. Journal of Computer Science and Technology, 2007, 22(6): 859-866. |
[6] | CHEN Wei, HUA Wei, BAO HuJun, PENG QunSheng. Real-Time Ray Casting Rendering of Volume Clipping in Medical Visualization[J]. Journal of Computer Science and Technology, 2003, 18(6). |
[7] | Tong Xin, Tang Zesheng. Hardware Assisted Fast Volume Rendering with Boundary Enhancement[J]. Journal of Computer Science and Technology, 1998, 13(5): 393-401. |
[8] | Li Bin, Liang Xundong, Liu Shenquan. A Surface Rendering Approach in 3D Rectilinear Datafield[J]. Journal of Computer Science and Technology, 1998, 13(3): 220-227. |
[9] | Cai Wenli, Shi Jiaoying. Composed Scattering Model for Direct Volume Rendering[J]. Journal of Computer Science and Technology, 1996, 11(5): 433-442. |
[10] | Huang Wenqi, Wang Gangqiang. A Basic Algorithm for Computer-Aided Design of Material Arrangement[J]. Journal of Computer Science and Technology, 1992, 7(1): 56-61. |