SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Quan S, Gao S, Zhang JS et al. Virtualization, cloudification, and service orientation of network: A systematic review. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 40(3): 701−730, May 2025. DOI: 10.1007/s11390-024-4817-6 |
Innovations in new applications and technological advancements are driving the evolution of network architectures towards flexibility and automation. Network Function Virtualization (NFV) deploys Network Functions (NFs) as software applications onto cloud infrastructures, redefining the development, deployment, and operation models of communication networks, thereby meeting the evolution demands of networks. However, after more than a decade of development, the progress of network service operators in NFV has not met expectations, partly because some key technologies remain unresolved. To accelerate the large-scale commercial use of NFV, this paper focuses on reviewing relevant literature from the past five years. Based on practical applications and insights into future trends, we explore the three directions of network virtualization, network cloudification, and network service orientation. We investigate the most representative technologies and the latest research progress in these fields, analyze the current problems and challenges, and provide corresponding suggestions on how to deal with them. Finally, we forecast future directions of technological development.
[1] |
Tsareva I, Doan T V, Bajpai V. A decade long view of Internet traffic composition in Japan. In Proc. the 2023 IFIP Networking Conference (IFIP Networking), Jun. 2023. DOI: 10.23919/IFIPNetworking57963.2023.10186393.
|
[2] |
Basta A, Kellerer W, Hoffmann M, Morper H J, Hoffmann K. Applying NFV and SDN to LTE mobile core gateways, the functions placement problem. In Proc. the 4th Workshop on All Things Cellular: Operations, Applications, & Challenges, Aug. 2014, pp.33–38. DOI: 10.1145/2627585.2627592.
|
[3] |
Niemiec G S, Batista L M S, Schaeffer-Filho A E, Nazar G L. A survey on FPGA support for the feasible execution of virtualized network functions. IEEE Communications Surveys & Tutorials, 2020, 22(1): 504–525. DOI: 10.1109/COMST.2019.2943690.
|
[4] |
Han S J, Jang K, Park K, Moon S. PacketShader: A GPU-accelerated software router. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 195–206. DOI: 10.1145/1851275.1851207.
|
[5] |
Kim J, Jang K, Lee K, Ma S, Shim J, Moon S. NBA (network balancing act): A high-performance packet processing framework for heterogeneous processors. In Proc. the 10th European Conference on Computer Systems, Apr. 2015, Article No. 22. DOI: 10.1145/2741948.2741969.
|
[6] |
Sun W, Ricci R. Fast and flexible: Parallel packet processing with GPUs and click. In Proc. the 2013 Architectures for Networking and Communications Systems, Oct. 2013, pp.25–35. DOI: 10.1109/ANCS.2013.6665173.
|
[7] |
Jung C, Kim S, Kim Y, Yeom I. Virtualizing GPU direct packet I/O on commodity Ethernet to accelerate GPU-NFV. Journal of Network and Computer Applications, 2022, 206:103480. DOI: 10.1016/j.jnca.2022.103480.
|
[8] |
Kundel R, Anderweit L, Markussen J, Griwodz C, Abboud O, Becker B, Meuser T. Host bypassing: Let your GPU speak Ethernet. In Proc. the 8th IEEE International Conference on Network Softwarization (NetSoft), Jun. 27–Jul. 1, 2022, pp.85–90. DOI: 10.1109/NetSoft54395.2022.9844090.
|
[9] |
Guo L, Zhang K, Wang X S. Gaviss: Boosting the performance of GPU-accelerated NFV systems via data sharing. IEEE Trans. Parallel and Distributed Systems, 2022, 33(12): 4472–4483. DOI: 10.1109/TPDS.2022.3193368.
|
[10] |
Sambasivam B, Subramanian M, Chatterjee D, Gouda M, Sethuramapandian S, Saroha Y S. Writing P4 compiler backend for packet processing engines. In Proc. the 2022 Symposium on Architectures for Networking and Communications Systems, Dec. 2021, pp.109–112. DOI: 10.1145/3493425.3502769.
|
[11] |
Arikawa Y, Sakamoto T, Shigematsu S. FPGA-based radio-resource scheduler for 5G mobile in NFV environments. IEICE Communications Express, 2019, 8(7): 263–268. DOI: 10.1587/comex.2019XBL0048.
|
[12] |
Wang K, Chang Y, Guo Z. High performance network virtualization architecture on FPGA SmartNIC. IEICE Trans. Communications, 2023, E106.B(6): 500–508. DOI: 10.1587/TRANSCOM.2022EBP3122.
|
[13] |
Lettieri G, Fais A, Antichi G, Procissi G. SmartNIC-accelerated stream processing analytics. In Proc. the 2023 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Nov. 2023, pp.135–140. DOI: 10.1109/NFV-SDN59219.2023.10329593.
|
[14] |
Abranches M, Michel O, Keller E, Schmid S. Efficient network monitoring applications in the kernel with eBPF and XDP. In Proc. the 2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Nov. 2021, pp.28–34. DOI: 10.1109/NFV-SDN53031.2021.9665095.
|
[15] |
Miano S, Doriguzzi-Corin R, Risso F, Siracusa D, Sommese R. Introducing SmartNICs in server-based data plane processing: The DDoS mitigation use case. IEEE Access, 2019, 7: 107161–107170. DOI: 10.1109/ACCESS.2019.2933491.
|
[16] |
Michalowicz B, Suresh K K, Subramoni H, Panda D K D, Poole S. Battle of the BlueFields: An in-depth comparison of the BlueField-2 and BlueField-3 SmartNICs. In Proc. the 2023 IEEE Symposium on High-Performance Interconnects (HOTI), Aug. 2023, pp.41–48. DOI: 10.1109/HOTI59126.2023.00020.
|
[17] |
Barsellotti L, Alhamed F, Olmos J J V, Paolucci F, Castoldi P, Cugini F. Introducing data processing units (DPU) at the edge. In Proc. the 2022 International Conference on Computer Communications and Networks (ICCCN), Jul. 2022. DOI: 10.1109/ICCCN54977.2022.9868927.
|
[18] |
Zhang H, Zhang C, Sun Q. Considerations on cloud-network convergence. Information and Communications Technology and Policy, 2022, 48(11): 1–6. DOI: 10.12267/j.issn.2096-5931.2022.11.001. (in Chinese)
|
[19] |
Fei X, Liu F, Zhang Q, Jin H, Hu H. Paving the way for NFV acceleration: A taxonomy, survey and future directions. ACM Computing Surveys (CSUR), 2021, 53(4): Article No. 73. DOI: 10.1145/3397022.
|
[20] |
Wu M, Chen Q, Wan G J. Toward low CPU usage and efficient DPDK communication in a cluster. The Journal of Supercomputing, 2022, 78(2): 1852–1884. DOI: 10.1007/s11227-021-03942-x.
|
[21] |
Belkhiri A, Pepin M, Bly M, Dagenais M. Performance analysis of DPDK-based applications through tracing. Journal of Parallel and Distributed Computing, 2023, 173: 1–19. DOI: 10.1016/j.jpdc.2022.10.012.
|
[22] |
Ayub A, Ishaq M, Munir M. Enhancement in multus CNI for DPDK applications in the cloud native environment. In Proc. the 26th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Mar. 2023, pp.66–68. DOI: 10.1109/ICIN56760.2023.10073475.
|
[23] |
Parola F, Procopio R, Querio R, Risso F. Comparing user space and in-kernel packet processing for edge data centers. ACM SIGCOMM Computer Communication Review, 2023, 53(1): 14–29. DOI: 10.1145/3594255.3594257.
|
[24] |
Miano S, Risso F, Bernal M V, Bertrone M, Lu Y. A framework for eBPF-based network functions in an era of microservices. IEEE Trans. Network and Service Management, 2021, 18(1): 133–151. DOI: 10.1109/TNSM.2021.3055676.
|
[25] |
Mostafa J, Chilingaryan S, Kopmann A. Are kernel drivers ready for accelerated packet processing using AF_XDP? In Proc. the 2023 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Nov. 2023, pp.117–122. DOI: 10.1109/NFV-SDN59219.2023.10329590.
|
[26] |
Zeng Z, Monis L, Qi S, Ramakrishnan K K. MiddleNet: A high-performance, lightweight, unified NFV and middlebox framework. In Proc. the 8th IEEE International Conference on Network Softwarization (NetSoft), Jun. 27–Jul. 1, 2022, pp.180–188. DOI: 10.1109/NetSoft54395.2022.9844083.
|
[27] |
De Benedictis M, Lioy A, Smiraglia P. Towards a secure and lightweight network function virtualisation environment. International Journal of Grid and Utility Computing, 2020, 11(2): 243–252. DOI: 10.1504/IJGUC.2020.105539.
|
[28] |
ZahoorS, Ahmad I, Rehman A U, Eldin E T, Ghamry N A, Shafiq M. Performance evaluation of virtualization methodologies to facilitate NFV deployment. Computers, Materials and Continua, 2023, 75(1): 311–329. DOI: 10.32604/cmc.2023.035960.
|
[29] |
Tran M N, Kim Y. Network performance benchmarking for containerized infrastructure in NFV environment. In Proc. the 8th IEEE International Conference on Network Softwarization (NetSoft), Jun. 27–Jul. 1, 2022, pp.115–120. DOI: 10.1109/NetSoft54395.2022.9844100.
|
[30] |
Nguyen D T, Dao N L, Lang K T, Pham T T, Nguyen P H, Pham C D, Pham T A, Nguyen D H, Nguyen H T. Enhancing CNF performance for 5G core network using SR-IOV in kubernetes. In Proc. the 24th International Conference on Advanced Communication Technology (ICACT), Feb. 2022, pp.501–506. DOI: 10.23919/ICACT53585.2022.9728817.
|
[31] |
Tambe S D, Mandge Y, Franklin A A. Performance study of multi-access edge computing deployment in a virtualized environment. In Proc. the 3rd IEEE 5G World Forum (5GWF), Sept. 2020, pp.424–429. DOI: 10.1109/5GWF49715.2020.9221113.
|
[32] |
Ramanathan S, Kondepu K, Razo M, Tacca M, Valcarenghi L, Fumagalli A. Live migration of virtual machine and container based mobile core network components: A comprehensive study. IEEE Access, 2021, 9: 105082–105100. DOI: 10.1109/ACCESS.2021.3099370.
|
[33] |
Ventre P L, Lungaroni P, Siracusano G, Pisa C, Schmidt F, Lombardo o F, Salsano S. On the fly orchestration of unikernels: Tuning and performance evaluation of virtual infrastructure managers. IEEE Trans. Cloud Computing, 2021, 9(2): 710–723. DOI: 10.1109/tcc.2018.2882505.
|
[34] |
Tu W, Wei Y H, Antichi G, Pfaff B. Revisiting the open vSwitch dataplane ten years later. In Proc. the 2021 ACM SIGCOMM Conference, Aug. 2021, pp.245–257. DOI: 10.1145/3452296.3472914.
|
[35] |
Sun C, Bi J, Zheng Z, Yu H, Hu H. NFP: Enabling network function parallelism in NFV. In Proc. the 2017 Conference of the ACM Special Interest Group on Data Communication, Aug. 2017, pp.43–56. DOI: 10.1145/3098822.309882.
|
[36] |
Xie S, Ma J, Zhao J. FlexChain: Bridging parallelism and placement for service function chains. IEEE Trans. Network and Service Management, 2021, 18(1): 195–208. DOI: 10.1109/TNSM.2020.3047834.
|
[37] |
Zheng D, Shen G, Cao X, Mukherjee B. Towards optimal parallelism-aware service chaining and embedding. IEEE Trans. Network and Service Management, 2022, 19(3): 2063–2077. DOI: 10.1109/TNSM.2022.3142184.
|
[38] |
Agarwal S, Chintapalli V R, Tamma B R. FlexSFC: Flexible resource allocation and VNF parallelism for improved SFC placement. In Proc. the 8th IEEE International Conference on Network Softwarization (NetSoft), Jun. 27–Jul. 1, 2022, pp.302–306. DOI: 10.1109/NetSoft54395.2022.9844084.
|
[39] |
Chintapalli V R, Partani R, Tamma B R, Murthy C S R. Energy efficient and delay aware deployment of parallelized service function chains in NFV-based networks. Computer Networks, 2024, 243:110289. DOI: 10.1016/j.comnet.2024.110289.
|
[40] |
Zhang W, Hwang J, Rajagopalan S, Ramakrishnan K K, Wood T. Flurries: Countless fine-grained NFs for flexible per-flow customization. In Proc. the 12th International on Conference on Emerging Networking EXperiments and Technologies, Dec. 2016, pp.3–17. DOI: 10.1145/2999572.2999602.
|
[41] |
Zeng D, Zhu A, Gu L, Li P, Chen Q, Guo M. Enabling efficient spatio-temporal GPU sharing for network function virtualization. IEEE Trans. Computers, 2023, 72(10): 2963–2977. DOI: 10.1109/TC.2023.3278541.
|
[42] |
Kouchaksaraei H R, Venkatesh A P S, Churi A, Illian M, Karl H. Dynamic provisioning of network services on heterogeneous resources. In Proc. the 2020 European Conference on Networks and Communications (EuCNC), Jun. 2020, pp.209–213. DOI: 10.1109/EuCNC48522.2020.9200912.
|
[43] |
Lopes F B, Schaeffer-Filho A E, Nazar G L. Modular VNF components acceleration with FPGA overlays. IEEE Trans. Network and Service Management, 2023, 20(1): 846–857. DOI: 10.1109/TNSM.2022.3211448.
|
[44] |
Pacífico R D G, Duarte L F S, Vieira L F M, Raghavan B, Nacif J A M, Vieira M A M. eBPFlow: A hardware/software platform to seamlessly offload network functions leveraging eBPF. IEEE/ACM Trans. Networking, 2024, 32(2): 1319–1332. DOI: 10.1109/TNET.2023.3318251.
|
[45] |
Cziva R, Jouet S, Pezaros D P. GNFC: Towards network function cloudification. In Proc. the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN), Nov. 2015, pp.142–148. DOI: 10.1109/NFV-SDN.2015.7387419.
|
[46] |
Sonkoly B, Szabo R, Jocha D, Czentye J, Kind M, Westphal F J. UNIFYing cloud and carrier network resources: An architectural view. In Proc. the 2015 IEEE Global Communications Conference (GLOBECOM), Dec. 2015, pp.1–7. DOI: 10.1109/GLOCOM.2015.7417869.
|
[47] |
Han B, Gopalakrishnan V, Kathirvel G, Shaikh A. On the resiliency of virtual network functions. IEEE Communications Magazine, 2017, 55(7): 152–157. DOI: 10.1109/MCOM.2017.1601201.
|
[48] |
Tola B, Jiang Y, Helvik B E. On the resilience of the NFV-MANO: An availability model of a cloud-native architecture. In Proc. the 16th International Conference on the Design of Reliable Communication Networks DRCN, Mar. 2020. DOI: 10.1109/DRCN48652.2020.1570604378.
|
[49] |
Duan J, Yi X, Zhao S, Wu C, Cui H, Le F. NFVactor: A resilient NFV system using the distributed actor model. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 586–599. DOI: 10.1109/JSAC.2019.2894287.
|
[50] |
Liu L, Xu H, Niu Z, Li J, Zhang W, Wang P, Li J, Xue J C, Wang C. ScaleFlux: Efficient stateful scaling in NFV. IEEE Trans. Parallel and Distributed Systems, 2022, 33(12): 4801–4817. DOI: 10.1109/TPDS.2022.3204209.
|
[51] |
Wu Z, Zhang Y, Feng W, Zhang Z L. NFlow and MVT abstractions for NFV scaling. In Proc. the 2022 IEEE Conference on Computer Communications, May 2022, pp.180–189. DOI: 10.1109/INFOCOM48880.2022.9796764.
|
[52] |
Mimidis A, Ollora E, Soler J, Bessem S, Roullet L, Van Rossem S, Pinneterre S, Paolino M, Raho D, Du X, Chesterfield J, Flouris M, Mariani L, Riganelli O, Mobilio M, Ramos A, Labrador I, Broadbent A, Veitch P, Zembra M. The next generation platform as a service cloudifying service deployments in telco-operators infrastructure. In Proc. the 25th International Conference on Telecommunications (ICT), Jun. 2018, pp.399–404. DOI: 10.1109/ICT.2018.8464838.
|
[53] |
Xu Z, Chen D, Hu Z, Sun Q. Emerging of telco cloud. China Communications, 2013, 10(6): 79–85. DOI: 10.1109/CC.2013.6549261.
|
[54] |
Soares J, Gonçalves C, Parreira B, Tavares P, Carapinha J, Barraca a J P, Aguiar R L, Sargento S. Toward a telco cloud environment for service functions. IEEE Communications Magazine, 2015, 53(2): 98–106. DOI: 10.1109/MCOM.2015.7045397.
|
[55] |
Al-Jemeli M, Hussin F A. An energy efficient cross-layer network operation model for IEEE 802.15.4-based mobile wireless sensor networks. IEEE Sensors Journal, 2015, 15(2): 684–692. DOI: 10.1109/JSEN.2014.2352041.
|
[56] |
Hernandez-Valencia E, Izzo S, Polonsky B. How will NFV/SDN transform service provider opex? IEEE Network, 2015, 29(3): 60–67. DOI: 10.1109/MNET.2015.7113227.
|
[57] |
Naik P, Shaw D K, Vutukuru M. NFVPerf: Online performance monitoring and bottleneck detection for NFV. In Proc. the 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Nov. 2016, pp.154–160. DOI: 10.1109/NFV-SDN.2016.7919491.
|
[58] |
Liu C, Cai Z, Wang B, Tang Z, Liu J. A protocol-independent container network observability analysis system based on eBPF. In Proc. the 26th IEEE International Conference on Parallel and Distributed Systems (ICPADS), Dec. 2020, pp.697–702. DOI: 10.1109/ICPADS51040.2020.00099.
|
[59] |
Gardikis G, Koutras I, Mavroudis G, Costicoglou S, Xilouris G, Sakkas C, Kourtis A. An integrating framework for efficient NFV monitoring. In Proc. the 2016 IEEE NetSoft Conference and Workshops (NetSoft), Jun. 2016, pp.1–5. DOI: 10.1109/NETSOFT.2016.7502431.
|
[60] |
Fan J, Ye Z, Guan C, Gao X, Ren K, Qiao C. GREP: Guaranteeing reliability with enhanced protection in NFV. In Proc. the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Virtualization, Aug. 2015, pp.13–18. DOI: 10.1145/2785989.2786000.
|
[61] |
Liu J, Jiang Z, Kato N, Akashi O, Takahara A. Reliability evaluation for NFV deployment of future mobile broadband networks. IEEE Wireless Communications, 2016, 23(3): 90–96. DOI: 10.1109/MWC.2016.7498079.
|
[62] |
Duan Q, Wang S, Ansari N. Convergence of networking and cloud/edge computing: Status, challenges, and opportunities. IEEE Network, 2020, 34(6): 148–155. DOI: 10.1109/MNET.011.2000089.
|
[63] |
Alshaer H. An overview of network virtualization and cloud network as a service. International Journal of Network Management, 2015, 25(1): 1–30. DOI: 10.1002/nem.1882.
|
[64] |
Koumaras H, Tsolkas D, Garcia J, Artunedo D, Garcia B, Marco R, Salkintzis A, Fragkos D, Makropoulos G, Setaki F, Diaz A, Merino P, Koumaras V, Encinar P, Karadimas Y. A network programmability framework for vertical applications in the beyond 5G era. In Proc. the 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Jun. 2022, pp.375–380. DOI: 10.1109/EuCNC/6GSummit54941.2022.9815790.
|
[65] |
Wang C X, You X, Gao X, Zhu X, Li Z, Zhang C, Wang H, Huang Y, Chen Y, Haas H, Thompson J S, Larsson E G, Di Renzo M, Tong W, Zhu P, Shen X, Poor H V, Hanzo L. On the road to 6G: Visions, requirements, key technologies, and testbeds. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. DOI: 10.1109/COMST.2023.3249835.
|
[66] |
Chowdhury S R, Salahuddin M A, Limam N, Boutaba R. Re-architecting NFV ecosystem with microservices: State of the art and research challenges. IEEE Network, 2019, 33(3): 168–176. DOI: 10.1109/MNET.2019.1800082.
|
[67] |
Hassan S, Ali N, Bahsoon R. Microservice ambients: An architectural meta-modelling approach for microservice granularity. In Proc. the 2017 IEEE International Conference on Software Architecture (ICSA), Apr. 2017, pp.1–10. DOI: 10.1109/ICSA.2017.32.
|
[68] |
E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, 2003.
|
[69] |
Rademacher F, Sachweh S, Zündorf A. Towards a UML profile for domain-driven design of microservice architectures. In Proc. the 2017 Collocated Workshops: DataMod, FAACS, MSE, CoSim-CPS, and FOCLASA on Software Engineering and Formal Methods, Sept. 2017, pp.230–245. DOI: 10.1007/978-3-319-74781-1_17.
|
[70] |
Romani Y, Tibermacine O, Tibermacine C. Towards migrating legacy software systems to microservice-based architectures: A data-centric process for microservice identification. In Proc. the 19th IEEE International Conference on Software Architecture Companion (ICSA-C), Mar. 2022, pp.15–19. DOI: 10.1109/ICSA-C54293.2022.00010.
|
[71] |
Alnaim A K, Alwakeel A M, Fernandez E B. Threats against the virtual machine environment of NFV. In Proc. the 2nd International Conference on Computer Applications & Information Security (ICCAIS), May 2019. DOI: 10.1109/CAIS.2019.8769561.
|
[72] |
Kablan M, Caldwell B, Han R, Jamjoom H, Keller E. Stateless network functions. In Proc. the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Virtualization, Aug. 2015, pp.49–54. DOI: 10.1145/2785989.2785993.
|
[73] |
Kulkarni S G, Ramakrishnan K K, Wood T. Managing state for failure resiliency in network function virtualization. In Proc. the 2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Jul. 2020. DOI: 10.1109/LANMAN49260.2020.9153271.
|
[74] |
Szalay M, Nagy M, Géhberger D, Kiss Z, Mátray P, Németh F, Pongrácz G, Rétvári G, Toka L. Industrial-scale stateless network functions. In Proc. the 12th IEEE International Conference on Cloud Computing (CLOUD), Jul. 2019, pp.383–390. DOI: 10.1109/CLOUD.2019.00068.
|
[75] |
Szalay M, Mátray P, Toka L. State management for cloud-native applications. Electronics, 2021, 10(4): Article No. 423. DOI: 10.3390/electronics10040423.
|
[76] |
Kulkarni U, Sheoran A, Fahmy S. The cost of stateless network functions in 5G. In Proc. the 2021 Symposium on Architectures for Networking and Communications Systems, Dec. 2021, pp.73–79. DOI: 10.1145/3493425.3502749.
|
[77] |
Goshi E, Karunakaran V, Harkous H, Pries R, Kellerer W. Procedure-aware stateless systems for 5G & beyond core networks. In Proc. The 2023 IEEE Global Communications Conference, Dec. 2023, pp.5403–5408. DOI: 10.1109/GLOBECOM54140.2023.10437306.
|
[78] |
Wu Y, Wang X. Research on network element management model based on cloud native technology. In Proc. the 2nd IEEE International Conference on Computer Communication and Artificial Intelligence (CCAI), May 2022, pp.17–20. DOI: 10.1109/CCAI55564.2022.9807784.
|
[79] |
Stolyarov R K, Shvetcova V V, Borisenko O D. TOMMANO—Virtualised network functions management in cloud environment based on the TOSCA standard. Doklady Mathematics, 2024, 109(1): 84–92. DOI: 10.1134/S1064562424701850.
|
[80] |
Massa J, Forti S, Paganelli F, Dazzi P, Brogi A. Declarative provisioning of virtual network function chains in intent-based networks. In Proc. the 9th IEEE International Conference on Network Softwarization (NetSoft), Jun. 2023, pp.522–527. DOI: 10.1109/NetSoft57336.2023.10175449.
|
[81] |
Mohammadi A, Nikaein N. Athena: An intelligent multi-x cloud native network operator. IEEE Journal on Selected Areas in Communications, 2024, 42(2): 460–472. DOI: 10.1109/JSAC.2023.3336172.
|
[82] |
Sharma S, Uniyal N, Tola B, Jiang Y. On monolithic and microservice deployment of network functions. In Proc. the 2019 IEEE Conference on Network Softwarization (NetSoft), Jun. 2019, pp.387–395. DOI: 10.1109/NETSOFT.2019.8806705.
|
[83] |
Dab B, Fajjari I, Rohon M, Auboin C, Diquélou A. Cloud-native service function chaining for 5G based on network service mesh. In Proc. the 2020 IEEE International Conference on Communications (ICC), Jun. 2020. DOI: 10.1109/ICC40277.2020.9149045.
|
[84] |
Sedghpour M R S, Townend P. Service mesh and eBPF-powered microservices: A survey and future directions. In Proc. the 2022 IEEE International Conference on Service-Oriented System Engineering (SOSE), Aug. 2022, pp.176–184. DOI: 10.1109/SOSE55356.2022.00027.
|
[85] |
Yang W Q, Chen P F, Yu G B, Zhang H B, Zhang H X. Network shortcut in data plane of service mesh with eBPF. Journal of Network and Computer Applications, 2024, 222:103805. DOI: 10.1016/j.jnca.2023.103805.
|
[86] |
Bittar A, Wang Z, Aghasharif A, Huang C, Shami G, Lyonnais M, Wilson R. Service function chaining design & implementation using network service mesh in kubernetes. In Proc. the 7th Asian Conference on Supercomputing Frontiers, Mar. 2022, pp.121–140. DOI: 10.1007/978-3-031-10419-0_8.
|
[87] |
Duong V B, Kim Y. A design of service mesh based 5G core network using cilium. In Proc. the 2023 International Conference on Information Networking (ICOIN), Jan. 2023, pp.25–28. DOI: 10.1109/ICOIN56518.2023.10049044.
|
[88] |
Aldas S, Babakian A. Cloud-native service mesh readiness for 5G and beyond. IEEE Access, 2023, 11: 132286–132295. DOI: 10.1109/ACCESS.2023.3335994.
|
[89] |
Osmani L, Kauppinen T, Komu M, Tarkoma S. Multi-cloud connectivity for kubernetes in 5G networks. IEEE Communications Magazine, 2021, 59(10): 42–47. DOI: 10.1109/MCOM.110.2100124.
|
[90] |
Aditya P, Akkus I E, Beck A, Chen R C, Hilt V, Rimac I, Satzke K, Stein M. Will serverless computing revolutionize NFV? Proceedings of the IEEE, 2019, 107(4): 667–678. DOI: 10.1109/JPROC.2019.2898101.
|
[91] |
Savi M, Banfi A, Tundo A, Ciavotta M. Serverless computing for NFV: Is it worth it? A performance comparison analysis. In Proc. the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Mar. 2022, pp.680–685. DOI: 10.1109/PerComWorkshops53856.2022.9767495.
|
[92] |
Shen J, Yu H, Zheng Z, Sun C, Xu M, Wang J. Serpens: A high-performance serverless platform for NFV. In Proc. the 28th IEEE/ACM International Symposium on Quality of Service (IWQoS), Jun. 2020. DOI: 10.1109/IWQoS49365.2020.9213030.
|
[93] |
Femminella M, Reali G. Implementing Internet of Things service platforms with network function virtualization serverless technologies. Future Internet, 2024, 16(3): Article No. 91. DOI: 10.3390/fi16030091.
|
[94] |
Suzuki T, Kim S Y, Kani J I, Yoshida T. Real-time polarization demultiplexing by multi-thread constant modulus algorithm for fully softwarized access networks. Journal of Lightwave Technology, 2023, 41(5): 1346–1356. DOI: 10.1109/JLT.2022.3225061.
|
[95] |
Almeida L F, Pereira S S, Domingues J D, Oliveira A S R, Carvalho N B. Moving NFV toward the antenna through FPGA-based hardware reconfiguration. IEEE Communications Letters, 2023, 27(1): 342–346. DOI: 10.1109/LCOMM.2022.3216506.
|
[96] |
Cong J, Fang Z, Huang M, Wei P, Wu D, Yu C H. Customizable computing—From single chip to datacenters. Proceedings of the IEEE, 2019, 107(1): 185–203. DOI: 10.1109/JPROC.2018.2876372.
|
[97] |
Lal R, Anderson J B, Jackson A. Data processing unit’s entry into confidential computing. In Proc. the 12th International Workshop on Hardware and Architectural Support for Security and Privacy, Oct. 2023, pp.56–63. DOI: 10.1145/3623652.3623670.
|
[98] |
Li B, Hou F, Yang G, Zhao H, Chen S. Data analysis-oriented stochastic scheduling for cost efficient resource allocation in NFV based MEC network. IEEE Trans. Vehicular Technology, 2023, 72(5): 6695–6708. DOI: 10.1109/TVT.2023.3234285.
|
[99] |
Cisneros J C, Yangui S, Hernández S E P, Drira K. A survey on distributed NFV multi-domain orchestration from an algorithmic functional perspective. IEEE Communications Magazine, 2022, 60(8): 60–65. DOI: 10.1109/MCOM.002.2100950.
|
[100] |
Abu-Lebdeh M, Naboulsi D, Glitho R, Tchouati C W. On the placement of VNF managers in large-scale and distributed NFV systems. IEEE Trans. Network and Service Management, 2017, 14(4): 875–889. DOI: 10.1109/TNSM.2017.2730199.
|
[101] |
Shen X, Gao J, Wu W, Li M, Zhou C, Zhuang W. Holistic network virtualization and pervasive network intelligence for 6G. IEEE Communications Surveys & Tutorials, 2022, 24(1): 1–30. DOI: 10.1109/COMST.2021.3135829.
|
[102] |
Mehmood K, Kralevska K, Palma D. Intent-driven autonomous network and service management in future cellular networks: A structured literature review. Computer Networks, 2023, 220:109477. DOI: 10.1016/j.comnet.2022.109477.
|
[103] |
Huang Y X, Chou J. A survey of NFV network acceleration from ETSI perspective. Electronics, 2022, 11(9): 1457. DOI: 10.3390/electronics11091457.
|
[104] |
Zhang T Z, Qiu H, Linguaglossa L, Cerroni W, Giaccone P. NFV platforms: Taxonomy, design choices and future challenges. IEEE Trans. Network and Service Management, 2021, 18(1): 30–48. DOI: 10.1109/TNSM.2020.3045381.
|
[105] |
Souza R, Dias K, Fernandes S. NFV data centers: A systematic review. IEEE Access, 2020, 8: 51713–51735. DOI: 10.1109/ACCESS.2020.2973568.
|
[106] |
Zoure M, Ahmed T, Reveillèere L. Network services anomalies in NFV: Survey, taxonomy, and verification methods. IEEE Trans. Network and Service Management, 2022, 19(2): 1567–1584. DOI: 10.1109/TNSM.2022.3144582.
|
[107] |
Saraiva De Sousa N F, Lachos Perez D A, Rosa R V, Santos M A S, Esteve Rothenberg C. Network service orchestration: A survey. Computer Communications, 2019, 142/143: 69–94. DOI: 10.1016/j.comcom.2019.04.008.
|
[108] |
Kaur K, Mangat V, Kumar K. A comprehensive survey of service function chain provisioning approaches in SDN and NFV architecture. Computer Science Review, 2020, 38:100298. DOI: 10.1016/j.cosrev.2020.100298.
|
[109] |
Santos G L, de Freitas Bezerra D, da Silva Rocha É, Ferreira L, Moreira A L C, Gonçalves G E, Marquezini M V, Recse Á, Mehta A, Kelner J, Sadok D, Endo P T. Service function chain placement in distributed scenarios: A systematic review. Journal of Network and Systems Management, 2022, 30(1): Article No. 4. DOI: 10.1007/s10922-021-09626-4.
|
[110] |
Azadiabad S, Khendek F. Dependability of network services in the context of NFV: A taxonomy and state of the art classification. Journal of Network and Systems Management, 2024, 32(2): Article No. 37. DOI: 10.1007/s10922-024-09810-2.
|
[1] | Ibrahim S. Alsukayti. Quality of Service Support in RPL Networks: Standing State and Future Prospects[J]. Journal of Computer Science and Technology, 2022, 37(2): 344-368. DOI: 10.1007/s11390-022-1027-y |
[2] | Wen-Li Zhang, Ke Liu, Yi-Fan Shen, Ya-Zhu Lan, Hui Song, Ming-Yu Chen, Yuan-Fei Chen. Labeled Network Stack: A High-Concurrency and Low-Tail Latency Cloud Server Framework for Massive IoT Devices[J]. Journal of Computer Science and Technology, 2020, 35(1): 179-193. DOI: 10.1007/s11390-020-9651-x |
[3] | Mansoor Davoodi, Esmaeil Delfaraz, Sajjad Ghobadi, Mahtab Masoori. Algorithms for Handoff Minimization in Wireless Networks[J]. Journal of Computer Science and Technology, 2019, 34(4): 887-900. DOI: 10.1007/s11390-019-1948-2 |
[4] | Ming-Xin Gan, Lily Sun, Rui Jiang. Trinity: Walking on a User-Object-Tag Heterogeneous Network for Personalised Recommendations[J]. Journal of Computer Science and Technology, 2016, 31(3): 577-594. DOI: 10.1007/s11390-016-1648-0 |
[5] | Fan-Fu Zhou, Ru-Hui Ma, Jian Li, Li-Xia Chen, Wei-Dong Qiu, Hai-Bing Guan. Optimizations for High Performance Network Virtualization[J]. Journal of Computer Science and Technology, 2016, 31(1): 107-116. DOI: 10.1007/s11390-016-1614-x |
[6] | Shui-Guang Deng, Long-Tao Huang, Jian Wu, Zhao-Hui Wu. Trust-Based Personalized Service Recommendation:A Network Perspective[J]. Journal of Computer Science and Technology, 2014, 29(1): 69-80. DOI: 10.1007/s11390-013-1412-7 |
[7] | Elena Garcia-Barriocanal, Miguel-Angel Sicilia, Salvador Sánchez-Alonso. Social Network-Aware Interfaces as Facilitators of Innovation[J]. Journal of Computer Science and Technology, 2012, 27(6): 1211-1221. DOI: 10.1007/s11390-012-1297-x |
[8] | Huai-Yu Wan, Student, You-Fang Lin, Zhi-Hao Wu, Hou-Kuan Huang. Discovering Typed Communities in Mobile Social Networks[J]. Journal of Computer Science and Technology, 2012, 27(3): 480-491. DOI: 10.1007/s11390-012-1237-9 |
[9] | Jun-Cheng Huang, Xiu-Qi Li, Jie Wu. A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks[J]. Journal of Computer Science and Technology, 2011, 26(6): 925-941. DOI: 10.1007/s11390-011-1190-z |
[10] | Liu-Sheng Huang, Hong-Li Xu, Yang Wang, Jun-Min Wu, Hong Li. Coverage and Exposure Paths in Wireless Sensor Networks[J]. Journal of Computer Science and Technology, 2006, 21(4): 490-495. |