Parameterized Computation and Complexity: A New Approach Dealing with NP-Hardnes
-
Abstract
The theory of parameterized computation and complexity is a recently developed subarea in theoretical computer science. The theory is aimed at practically solving a large number of computational problems that are theoretically intractable. The theory is based on the observation that many intractable computational problems in practice are associated with a parameter that varies within a small or moderate range. Therefore, by taking the advantages of the small parameters, many theoretically intractable problems can be solved effectively and practically. On the other hand, the theory of parameterized computation and complexity has also offered powerful techniques that enable us to derive strong computational lower bounds for many computational problems, thus explaining why certain theoretically tractable problems cannot be solved effectively and practically. The theory of parameterized computation and complexity has found wide applications in areas such as database systems, programming languages, networks, VLSI design, parallel and distributed computing, computational biology, and robotics. This survey gives an overview on the fundamentals, algorithms, techniques, and applications developed in the research of parameterized computation and complexity. We will also report the most recent advances and excitements, and discuss further research directions in the area.
-
-