SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Ying-Lei Song, Ji-Zhen Zhao, Chun-Mei Liu, Kan Liu, Russell Malmberg, Li-Ming Cai. RNA Structural Homology Search with a Succinct Stochastic Grammar Model[J]. Journal of Computer Science and Technology, 2005, 20(4): 454-464. |
[1] |
Sakakibara Y, Brown M, Hughey R et al. Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research, 1994, 22: 5112--5120.
|
[2] |
Eddy S R, Durbin R. RNA sequence analysis using covariance models. Nucleic Acids Research, 1994, 22: 2079--2088.
|
[3] |
Tinico I, Borer P N, Dengler B et al. Improved estimation of secondary structure in ribonucleic acids.Nature New Biology, 1973, 246: 40--41.
|
[4] |
Lowe T M, Eddy S R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genes in genomic sequences. Nucleic Acids Research, 1997, 25: 955--964.
|
[5] |
Klein R J, Eddy S R. Rsearch: Finding homologs of single structured RNA sequences.BMC Bioinformatics, 2003, 4(1): 44.
|
[6] |
Rivas E, Eddy S R. Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics, 2001, 2(8).
|
[7] |
Rivas E, Klein R J, Jones T A, Eddy S R. Computational identification of non-coding RNAs in E. coli by comparative genomics. Curr. Biol., 2001, 1(1): 1369--1373.
|
[8] |
Rivas E, Eddy S R. Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics, 2000, 16: 583--605.
|
[9] |
Eddy S R. Non-coding RNA genes and the modern RNA world. Nature Genetics, 2001, 2: 919--929.
|
[10] |
Dowell R D, Eddy S R. Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC Bioinformatics, 2004, 5(1): 71.
|
[11] |
Knudsen B, Hein J. RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics, 1999, 15: 446--454.
|
[12] |
Durbin R, Eddy S R, Krogh A, Mitchison G J. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids,Cambridge University Press, 1998.
|
[13] |
Weinberg Z, Ruzzo W L. Faster genome annotation of non-coding RNA families without loss of accuracy. In Proc.The Eighth Annual Int. Conf. Research in Computational Molecular Biology, 2004, 243--251.
|
[14] |
Brown M, Wilson C. RNA pseudoknot modeling using intersections of stochastic context-free grammars with applications to database search. In Pacific Symposium on Biocomputing, 1996.
|
[15] |
Felden B, Massire C, Westhof E et al. Phylogenetic analysis of tmRNA genes within a bacterial subgroup reveals a specific structural signature. Nucleic Acids Research, 2001, 29: 1602--1607.
|
[16] |
Brown M P. Small subunit ribosomal RNA modeling using stochastic context-free grammars. In Proc. Int. Conf. Intelligent Systems in Molecular Biology, 2000, 8: 57--66.
|
[17] |
Holmes I, Rubin D H. Pairwise RNA structure comparison with stochastic context-free grammars. In Pacific Symposium on Biocomputing , 2002, pp.191--203.
|
[18] |
Cai L, Malmberg R L, Wu Y. Stochastic modeling of RNA pseudoknotted structures: A grammatical approach. In Proceedings of the 11th Intelligent Systems for Molecular Biology, also Bioinformatics, 2003, 19: 66--73.
|
[19] |
Zeenko V V, Ryabova L A, Spirin A S et al. Eukaryotic elongation factor 1A interacts with the upstream pseudoknot domain in the 3' untranslated region of tobacco mosaic virus RNA. Journal of Virology, 2002, 76(11): 5678--5691.
|
[20] |
Griffiths-Jones S, Bateman A, Marshall M et al. Rfam: An RNA family database. Nucleic Acids Research, 2003,31(1): 439--441.
|
[21] |
Lyngso R B, Pedersen C N S. RNA pseudoknot prediction in energy based models.Journal of Computational Biology, 2000, 7:409--428.
|
[22] |
Sprinzl M, Horn C, Brown M et al. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Research, 1998, 26(1): 148--153.
|
[23] |
Tanaka Y, Hori T, Tagaya M et al. Imino proton NMR analysis of HDV ribozymes: Nested double pseudoknot structure and Mg2+ion-binding site close to the catalytic core in solution. Nucleic Acids Research, 2002, 30: 766--774.
|
[1] | Xue-Qi Li, Student, Guang-Ming Tan, Ning-Hui Sun. PIM-Align: A Processing-in-Memory Architecture for FM-Index Search Algorithm[J]. Journal of Computer Science and Technology, 2021, 36(1): 56-70. DOI: 10.1007/s11390-020-0825-3 |
[2] | Woo-Cheol Kim, Sanghyun Park, Jung-Im Won. CORE: Common Region Extension Based Multiple Protein Structure Alignment for Producing Multiple Solution[J]. Journal of Computer Science and Technology, 2013, 28(4): 647-656. DOI: 10.1007/s11390-013-1365-x |
[3] | Xiao-Yong Fang, Zhi-Gang Luo, Zheng-Hua Wang. Predicting RNA Secondary Structure Using Profile Stochastic Context-Free Grammars and Phylogenic Analysis[J]. Journal of Computer Science and Technology, 2008, 23(4): 582-589. |
[4] | Guang-Ming Tan, Lin Xu, Dong-Bo Bu, Sheng-Zhong Feng, Ning-Hui Sun. Improvement of Performance of MegaBlast Algorithm for DNA Sequence Alignment[J]. Journal of Computer Science and Technology, 2006, 21(6): 973-978. |
[5] | Giuseppe Lancia. Integer Programming Models for Computational Biology Problems[J]. Journal of Computer Science and Technology, 2004, 19(1). |
[6] | Giulio Pavesi, Giancarlo Mauri, Graziano Pesole. An Algorithm for Finding Conserved Secondary Structure Motifs in Unaligned RNA Sequences[J]. Journal of Computer Science and Technology, 2004, 19(1). |
[7] | WANG Wei, WaNG Yujun, SHI Baile. Dynamic Interval Index Structure in Constraint Database Systems[J]. Journal of Computer Science and Technology, 2000, 15(6): 542-551. |
[8] | LING Yu, LI Shu, ZHANG Hui, HAN Chengde. Timing-Sequence Testing of Parallel Programs[J]. Journal of Computer Science and Technology, 2000, 15(1): 84-95. |
[9] | CAI Jiamei. The Sequence Modeling Method Based on ECCin Developing Program Specifications[J]. Journal of Computer Science and Technology, 1999, 14(4): 337-348. |
[10] | WANG Jian, ZHANG Fuyan. Multicast Address Management and Connection Control Based on Hierarchical Autonomous Structure[J]. Journal of Computer Science and Technology, 1999, 14(1): 64-73. |