Processing math: 100%
We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Chiou-Yng Lee, Yung-Hui Chen, Che-Wun Chiou, Jim-Min Lin. Unified Parallel Systolic Multiplier Over GF(2^m)[J]. Journal of Computer Science and Technology, 2007, 22(1): 28-38.
Citation: Chiou-Yng Lee, Yung-Hui Chen, Che-Wun Chiou, Jim-Min Lin. Unified Parallel Systolic Multiplier Over GF(2^m)[J]. Journal of Computer Science and Technology, 2007, 22(1): 28-38.

Unified Parallel Systolic Multiplier Over GF(2^m)

More Information
  • Received Date: January 05, 2006
  • Revised Date: May 19, 2006
  • Published Date: January 14, 2007
  • In general, there are three popular basisrepresentations, standard (canonical, polynomial) basis, normal basis,and dual basis, for representing elements in GF(2m). Variousbasis representations have their distinct advantages and have theirdifferent associated multiplication architectures. In this paper, wewill present a unified systolic multiplication architecture, byemploying Hankel matrix-vector multiplication, for various basisrepresentations. For various element representation in GF(2m),we will show that various basis multiplications can be performed byHankel matrix-vector multiplications. A comparison with existing andsimilar structures has shown that the proposed architectures performwell both in space and time complexities.
  • [1]
    Denning D E R. Cryptography and Data Security. Reading, MA: Addison-Wesley, 1983.
    [2]
    Rhee M Y. Cryptography and Secure Communications. Singapore: McGraw-Hill, 1994.
    [3]
    Menezes A, Oorschot P V, Vanstone S. Handbook of Applied Cryptography. Boca Raton, FL: CRC Press, 1997.
    [4]
    Massey J L, Omura J K. Computational method and apparatus for finite field arithmetic. U.S. Patent Number 4.587.627, May 1986.
    [5]
    Itoh T, Tsujii S. Structure of parallel multipliers for a class of fields -\it GF}(2-m}). \it Information and Computation, \rm 1989, 83: 21--40.
    [6]
    Wu H, Hasan M A. Low complexity bit-parallel multipliers for a class of finite fields. \it IEEE Trans. Computers, \rm 1998, 47(8): 883--887.
    [7]
    Koc C K, Sunar B. Low complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. \it IEEE Trans. Computers, \rm 1998, 47(3): 353--356.
    [8]
    Hasan M A, Wang M Z, Bhargava V K. A modified Massey-Omura parallel multiplier for a class of finite fields. \it IEEE Trans. Computers, \rm 1993, 42(10): 1278--1280.
    [9]
    Sunar B, Koc C K. An efficient optimal normal basis type II multiplier. \it IEEE Trans. Computers, \rm 2001, 50(1): 83--87.
    [10]
    Yeh C S, Reed S, Truong T K. Systolic multipliers for finite fields -\it GF}(2-m}). \it IEEE Trans. Computers, \rm 1984, C-33(4): 357--360.
    [11]
    Wang C L, Lin J L. Systolic array implementation of multipliers for finite fields -\it GF}(2-m}). \it IEEE Trans. Circuits and Systems, \rm 1991, 38(7): 796--800.
    [12]
    Wei S W. A systolic power-sum circuit for -\it GF}(2-m}). \it IEEE Trans. Computers, \rm 1994, 43(2): 226--229.
    [13]
    Wang C L. Bit-level systolic array for fast exponentiation in -\it GF}(2-m}). \it IEEE Trans. Computers, \rm 1994, 43(7): 838--841.
    [14]
    Lee C Y. Low-latency bit-parallel systolic multiplier for irreducible x-m}+x-n}+1 with gcd(m,n)=1. \it IEICE Trans. Fundamentals, \rm 2003, E86-A(11): 2844--2852.
    [15]
    Lee C Y, Lu E H, Lee J Y. Bit-parallel systolic multipliers for -\it GF}(2-m}) fields defined by all-one and equally-spaced polynomials. \it IEEE Trans. Computers, \rm 2001, 50(5): 385--393.
    [16]
    Kwon S. A low complexity and a low latency bit parallel systolic multiplier over -\it GF} (2-m}) using an optimal normal basis of type II. In \it Proc. 16th IEEE Symp. Computer Arithmetic, \rm Santiago de Compostela, Spain, 2003, 16: 196--202.
    [17]
    Belekamp E R. Bit-serial Reed-Solomon encoders. \it IEEE Information Theory, \rm 1982, 28: 869--974.
    [18]
    Morii M, Kasahara K, Whiting D L. Efficient bit-serial multiplication and discrete-time Wiener-Hoph equation over finite fields. \it IEEE Trans. Information Theory, \rm 1989, 35: 1177--1184.
    [19]
    Wang M, Blake I F. Bit serial multiplication in finite fields. \it SIAM Discrete Math., \rm 1990, 3(1): 140--148.
    [20]
    Wang C C. An algorithm to design finite field multipliers using a self-dual normal basis. \it IEEE Trans. Computers, \rm 1989, 38(10): 1457--1459.
    [21]
    Wu H, Hasan M A, Blake L F. New low-complexity bit-parallel finite field multipliers using weakly dual bases. \it IEEE Trans. Computers, \rm 1998, 47(11): 1223--1234.
    [22]
    Fenn S T J, Benaissa M, Taylor D. -\it GF}(2-m}) Multiplication and division over the dual basis. \it IEEE Trans. Computers, \rm 1996, 45(3): 319--327.
    [23]
    Fenn S T J, Benaissa M, Taylor D. A dual basis systolic multipliers for -\it GF}(2-m}). \it IEE Proc-Comp. Digit. Tech., \rm 1997, 144(1): 43--46.
    [24]
    Weisstein E W. Hankel Matrix. Mathworld --A wolfram web resource, http://mathworld.com/HankelMatrix.html.
    [25]
    Parhi K. VLSI Signal Processing Systems: Design and Implementation. John Wiley \& Sons, 1999.
    [26]
    Seroussi G. Table of low-weight binary irreducible polynomials. Visual Computing Dept., Hewlett Packard Laboratories, Aug. 1998, Available at: http://www.hpl.hp.com/techre\-po\-rts/98/HPL-98-135.html.
    [27]
    Perlis S. Normal bases of cyclic fields of prime power degree. \it Duke Math. J., \rm 1942, 9: 507--517.
    [28]
    Mullin R C, Onyszchuk I M, Vanstone S A, Wilson R M. Optimal normal bases in -\it GF}(p-n}). \it Discrete Applied Math., \rm 1988/1989, 22: 149--161.
    [29]
    Brent R P, Zimmermann P. Algorithms for finding almost irreducible and almost primitive trinomials. In \it Primes and Misdemeeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, \rm Fields Institute Communication FIC/41, The Fields Institute, Toronto, 2004, pp.91--102.
    [30]
    Lee C Y. Low complexity bit-parallel systolic multiplier over -\it GF}(2-m}) using irreducible trinomials. \it IEE Proc.-Comput. and Digit. Tech., \rm 2003, 150(1): 39--42.
  • Related Articles

    [1]Dong-Yu Zheng, Yan Sun, Shao-Qing Li, Liang Fang. A 485ps 64-Bit Parallel Adder in 0.18μm CMOS[J]. Journal of Computer Science and Technology, 2007, 22(1): 25-27.
    [2]Chiou-Yng Lee, Jenn-Shyong Horng, I-Chang Jou. Low-Complexity Bit-Parallel Multiplier over GF(2m) Using Dual Basis Representation[J]. Journal of Computer Science and Technology, 2006, 21(6): 887-892.
    [3]Ye-Kui Wang. AVS-M: From Standards to Applications[J]. Journal of Computer Science and Technology, 2006, 21(3): 332-344.
    [4]ZHANG Zaiyue, SUI Yuefei. The Contiguity in R/M[J]. Journal of Computer Science and Technology, 2002, 17(4).
    [5]Gao Wen, Chen Xilin. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence[J]. Journal of Computer Science and Technology, 1997, 12(5): 385-399.
    [6]Liang Xundong, Li Bin, Liu Shenquan. Three-Dimensional Vector Field Visualization Based on Tensor Decomposition[J]. Journal of Computer Science and Technology, 1996, 11(5): 452-460.
    [7]Luo Yinfang. Algorithm and Implementation of Parallel Multiplication in a Mixed Number System[J]. Journal of Computer Science and Technology, 1988, 3(3): 203-213.
    [8]Sun Yongqiang. Verification of Systolic Array:An FP Functional Approach[J]. Journal of Computer Science and Technology, 1988, 3(2): 81-101.
    [9]Qi Yulu. A Systolic Approach for an Improvement of a Finite Field Multiplier[J]. Journal of Computer Science and Technology, 1987, 2(4): 303-309.
    [10]Chen Shihua. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. Journal of Computer Science and Technology, 1986, 1(2): 54-59.

Catalog

    Article views (17) PDF downloads (5894) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return