SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Chiou-Yng Lee, Yung-Hui Chen, Che-Wun Chiou, Jim-Min Lin. Unified Parallel Systolic Multiplier Over GF(2^m)[J]. Journal of Computer Science and Technology, 2007, 22(1): 28-38. |
[1] |
Denning D E R. Cryptography and Data Security. Reading, MA: Addison-Wesley, 1983.
|
[2] |
Rhee M Y. Cryptography and Secure Communications. Singapore: McGraw-Hill, 1994.
|
[3] |
Menezes A, Oorschot P V, Vanstone S. Handbook of Applied Cryptography. Boca Raton, FL: CRC Press, 1997.
|
[4] |
Massey J L, Omura J K. Computational method and apparatus for finite field arithmetic. U.S. Patent Number 4.587.627, May 1986.
|
[5] |
Itoh T, Tsujii S. Structure of parallel multipliers for a class of fields -\it GF}(2-m}). \it Information and Computation, \rm 1989, 83: 21--40.
|
[6] |
Wu H, Hasan M A. Low complexity bit-parallel multipliers for a class of finite fields. \it IEEE Trans. Computers, \rm 1998, 47(8): 883--887.
|
[7] |
Koc C K, Sunar B. Low complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. \it IEEE Trans. Computers, \rm 1998, 47(3): 353--356.
|
[8] |
Hasan M A, Wang M Z, Bhargava V K. A modified Massey-Omura parallel multiplier for a class of finite fields. \it IEEE Trans. Computers, \rm 1993, 42(10): 1278--1280.
|
[9] |
Sunar B, Koc C K. An efficient optimal normal basis type II multiplier. \it IEEE Trans. Computers, \rm 2001, 50(1): 83--87.
|
[10] |
Yeh C S, Reed S, Truong T K. Systolic multipliers for finite fields -\it GF}(2-m}). \it IEEE Trans. Computers, \rm 1984, C-33(4): 357--360.
|
[11] |
Wang C L, Lin J L. Systolic array implementation of multipliers for finite fields -\it GF}(2-m}). \it IEEE Trans. Circuits and Systems, \rm 1991, 38(7): 796--800.
|
[12] |
Wei S W. A systolic power-sum circuit for -\it GF}(2-m}). \it IEEE Trans. Computers, \rm 1994, 43(2): 226--229.
|
[13] |
Wang C L. Bit-level systolic array for fast exponentiation in -\it GF}(2-m}). \it IEEE Trans. Computers, \rm 1994, 43(7): 838--841.
|
[14] |
Lee C Y. Low-latency bit-parallel systolic multiplier for irreducible x-m}+x-n}+1 with gcd(m,n)=1. \it IEICE Trans. Fundamentals, \rm 2003, E86-A(11): 2844--2852.
|
[15] |
Lee C Y, Lu E H, Lee J Y. Bit-parallel systolic multipliers for -\it GF}(2-m}) fields defined by all-one and equally-spaced polynomials. \it IEEE Trans. Computers, \rm 2001, 50(5): 385--393.
|
[16] |
Kwon S. A low complexity and a low latency bit parallel systolic multiplier over -\it GF} (2-m}) using an optimal normal basis of type II. In \it Proc. 16th IEEE Symp. Computer Arithmetic, \rm Santiago de Compostela, Spain, 2003, 16: 196--202.
|
[17] |
Belekamp E R. Bit-serial Reed-Solomon encoders. \it IEEE Information Theory, \rm 1982, 28: 869--974.
|
[18] |
Morii M, Kasahara K, Whiting D L. Efficient bit-serial multiplication and discrete-time Wiener-Hoph equation over finite fields. \it IEEE Trans. Information Theory, \rm 1989, 35: 1177--1184.
|
[19] |
Wang M, Blake I F. Bit serial multiplication in finite fields. \it SIAM Discrete Math., \rm 1990, 3(1): 140--148.
|
[20] |
Wang C C. An algorithm to design finite field multipliers using a self-dual normal basis. \it IEEE Trans. Computers, \rm 1989, 38(10): 1457--1459.
|
[21] |
Wu H, Hasan M A, Blake L F. New low-complexity bit-parallel finite field multipliers using weakly dual bases. \it IEEE Trans. Computers, \rm 1998, 47(11): 1223--1234.
|
[22] |
Fenn S T J, Benaissa M, Taylor D. -\it GF}(2-m}) Multiplication and division over the dual basis. \it IEEE Trans. Computers, \rm 1996, 45(3): 319--327.
|
[23] |
Fenn S T J, Benaissa M, Taylor D. A dual basis systolic multipliers for -\it GF}(2-m}). \it IEE Proc-Comp. Digit. Tech., \rm 1997, 144(1): 43--46.
|
[24] |
Weisstein E W. Hankel Matrix. Mathworld --A wolfram web resource, http://mathworld.com/HankelMatrix.html.
|
[25] |
Parhi K. VLSI Signal Processing Systems: Design and Implementation. John Wiley \& Sons, 1999.
|
[26] |
Seroussi G. Table of low-weight binary irreducible polynomials. Visual Computing Dept., Hewlett Packard Laboratories, Aug. 1998, Available at: http://www.hpl.hp.com/techre\-po\-rts/98/HPL-98-135.html.
|
[27] |
Perlis S. Normal bases of cyclic fields of prime power degree. \it Duke Math. J., \rm 1942, 9: 507--517.
|
[28] |
Mullin R C, Onyszchuk I M, Vanstone S A, Wilson R M. Optimal normal bases in -\it GF}(p-n}). \it Discrete Applied Math., \rm 1988/1989, 22: 149--161.
|
[29] |
Brent R P, Zimmermann P. Algorithms for finding almost irreducible and almost primitive trinomials. In \it Primes and Misdemeeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, \rm Fields Institute Communication FIC/41, The Fields Institute, Toronto, 2004, pp.91--102.
|
[30] |
Lee C Y. Low complexity bit-parallel systolic multiplier over -\it GF}(2-m}) using irreducible trinomials. \it IEE Proc.-Comput. and Digit. Tech., \rm 2003, 150(1): 39--42.
|
[1] | Dong-Yu Zheng, Yan Sun, Shao-Qing Li, Liang Fang. A 485ps 64-Bit Parallel Adder in 0.18μm CMOS[J]. Journal of Computer Science and Technology, 2007, 22(1): 25-27. |
[2] | Chiou-Yng Lee, Jenn-Shyong Horng, I-Chang Jou. Low-Complexity Bit-Parallel Multiplier over GF(2m) Using Dual Basis Representation[J]. Journal of Computer Science and Technology, 2006, 21(6): 887-892. |
[3] | Ye-Kui Wang. AVS-M: From Standards to Applications[J]. Journal of Computer Science and Technology, 2006, 21(3): 332-344. |
[4] | ZHANG Zaiyue, SUI Yuefei. The Contiguity in R/M[J]. Journal of Computer Science and Technology, 2002, 17(4). |
[5] | Gao Wen, Chen Xilin. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence[J]. Journal of Computer Science and Technology, 1997, 12(5): 385-399. |
[6] | Liang Xundong, Li Bin, Liu Shenquan. Three-Dimensional Vector Field Visualization Based on Tensor Decomposition[J]. Journal of Computer Science and Technology, 1996, 11(5): 452-460. |
[7] | Luo Yinfang. Algorithm and Implementation of Parallel Multiplication in a Mixed Number System[J]. Journal of Computer Science and Technology, 1988, 3(3): 203-213. |
[8] | Sun Yongqiang. Verification of Systolic Array:An FP Functional Approach[J]. Journal of Computer Science and Technology, 1988, 3(2): 81-101. |
[9] | Qi Yulu. A Systolic Approach for an Improvement of a Finite Field Multiplier[J]. Journal of Computer Science and Technology, 1987, 2(4): 303-309. |
[10] | Chen Shihua. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. Journal of Computer Science and Technology, 1986, 1(2): 54-59. |