Processing math: 100%
We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Wei-Lin Li, Peng Zhang, Da-Ming Zhu. On Constrained Facility Location Problems[J]. Journal of Computer Science and Technology, 2008, 23(5): 740-748.
Citation: Wei-Lin Li, Peng Zhang, Da-Ming Zhu. On Constrained Facility Location Problems[J]. Journal of Computer Science and Technology, 2008, 23(5): 740-748.

On Constrained Facility Location Problems

More Information
  • Revised Date: July 07, 2008
  • Published Date: September 09, 2008
  • [1] Love R, Morris J, Wesolowsky G. Facilities Location: Models and Methods. North Holland, New York: Appleton \& Lange, 1988.
    [2]
    } Mirchandani P, Francis R (eds). Discrete Location Theory. New York: John Wiley \& Sons, 1990.
    [3]
    } Shmoys D. Approximation algorithms for facility location problems. In {\it Proc. the 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization}, {\it LNCS 1913}, Saarbr\"ucken, Germany, September 5--8, 2000, pp.27--33.
    [4]
    } Hochbaum D. Heuristic for the fixed cost median problem. {\it Mathematical Programming}, 1982, 22(2): 148--162.
    [5]
    } Chudak F. Improved approximation algorithms for uncapitated facility location. In {\it Proc. the 6th International Conference on Integer Programming and Combinatorial Optimization}, {\it LNCS 1412}, Houston, Texas, June 22--24, 1998, pp.180--194.
    [6]
    } Jain K, Vazirani V. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. {\it Journal of the ACM}, 2001, 48(2): 274--296.
    [7]
    } Jain K, Mahdian M, Markakis E, Saberi A, Vazirani V. Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. {\it Journal of the ACM}, 2003, 50(6): 795--824.
    [8]
    } Arya V, Garg N, Khandekar R, Meyerson A, Munagala K, Pandit V. Local search heuristic for k-median and facility location problem. {\it SIAM Journal on Computing}, 2004, 33(3): 544--562.
    [9]
    } Pan R, Zhu D M, Ma S H, Xiao J J. Approximated computational hardness and local search approximated algorithm analysis for k-median problem. {\it Journal of Software}, 2005, 16(3): 392--399. (in Chinese)
    [10]
    } Pan R, Zhu D M, Ma S H. Research on computational complexity and approximation algorithm for general facility location problem. {\it Journal of Computer Research and Development}, 2007, 44(5): 790--797. (in Chinese)
    [11]
    } Mahdian M, Ye Y Y, Zhang J W. Improved approximation algorithms for metric facility location problems. In {\it Proc. the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization}, {\it LNCS} 2462, Rome, Italy, September 17--21, 2002, pp.229--242.
    [12]
    } Zhang P. A new approximation algorithm for the k-Facility Location problem. {\it Theoretical Computer Science}, 2007, 384(1): 126--135.
    [13]
    } Arora S, Raghavan P, Rao S. Approximation schemes for Euclidean k-Median and related problems. In {\it Proc. the 30th Annual ACM Symposium on Theory of Computing}, Dallas, Texas, United States, May 24--26, 1998, pp.106--113.
    [14]
    } Beasley J. Operations research library, 2007, Available at http://people.brunel.ac.uk/mastjjb/\\jeb/orlib/uncapinfo.html.
    [15]
    } Guha S, Khuller S. Greedy strikes back: Improved facility location algorithms. {\it Journal of Algorithms}, 1999, 31(1): 228--248.
    [16]
    } Charikar M, Guha S. Improved combinatorial algorithms for the facility location and k-median problems. In {\it Proc. the 40th IEEE Annual Symposium on Foundations of Computer Science}, New York, United States, October 17--19, 1999, pp.378--388.
    [17]
    } Korupolu M, Plaxton C, Rajaraman R. Analysis of a local search heuristic for facility location problems. {\it Journal of Algorithms}, 2000, 37(1): 146--188.
    [18]
    } Feige U. A threshold of lnn for approximating set cover. {\it Journal of the ACM}, 1998, 45(4): 634--652.
  • Related Articles

    [1]Zhi-Han Chen, Shao-Wei Cai, Jian Gao, Shi-Ke Ge, Chan-Juan Liu, Jin-Kun Lin. Heuristic Search with Cut Point Based Strategy for Critical Node Problem[J]. Journal of Computer Science and Technology, 2024, 39(6): 1328-1340. DOI: 10.1007/s11390-024-2850-0
    [2]Wen-Sheng Guo, Guo-Wu Yang, William N. N. Hung, Xiaoyu Song. Complete Boolean Satisfiability Solving Algorithms Based on Local Search[J]. Journal of Computer Science and Technology, 2013, 28(2): 247-254. DOI: 10.1007/s11390-013-1326-4
    [3]Jian-Xin Wang, Xiao-Shuang Xu, Jian-Er Chen. Approximation Algorithm Based on Chain Implication for Constrained Minimum Vertex Covers in Bipartite Graphs[J]. Journal of Computer Science and Technology, 2008, 23(5): 763-768.
    [4]Florian Diedrich, Rolf Harren, Klaus Jansen, Ralf Th&oumlle, Henning Thomas. Approximation Algorithms for 3D Orthogonal Knapsack[J]. Journal of Computer Science and Technology, 2008, 23(5): 749-762.
    [5]Ya-Feng Wu, Yin-Long Xu, Guo-Liang Chen. Approximation Algorithms for Steiner Connected Dominating Set[J]. Journal of Computer Science and Technology, 2005, 20(5): 713-716.
    [6]Zi-Mao Li, Da-Ming Zhu, Shao-Han Ma. Approximation Algorithm for Bottleneck Steiner Tree Problem in the Euclidean Plane[J]. Journal of Computer Science and Technology, 2004, 19(6).
    [7]JING Tong, HONG XianLong, BAO HaiYun, XU JingYu, GU Jun. SSTT: Efficient Local Search for GSI Global Routing[J]. Journal of Computer Science and Technology, 2003, 18(5).
    [8]HE Yong, CHEN Ting. A New Approximation Algorithm for Sorting of Signed Permutations[J]. Journal of Computer Science and Technology, 2003, 18(1).
    [9]HUANG Wenqi, ZHANG Defu, WANG Houxiang. An Algorithm Based on Tabu Search for Satisfiability Problem[J]. Journal of Computer Science and Technology, 2002, 17(3).
    [10]ZHANG Li'ang, ZHANG Yin. Approximation for- Knapsack Problemswith Multiple Constraints[J]. Journal of Computer Science and Technology, 1999, 14(4): 289-297.

Catalog

    Article views (22) PDF downloads (1988) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return