SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Chandrajit L. Bajaj, Guo-Liang Xu, Qin Zhang. Higher-Order Level-Set Method and Its Application in Biomolecular Surfaces Construction[J]. Journal of Computer Science and Technology, 2008, 23(6): 1026-1036. |
[1] | Osher S, Fedkiw R. Level Set Method and Dynamic Implicit Surfaces. New York: Springer, 2003. |
[2] |
} Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematical, Second edition, Cambridge University Press, 1999.
|
[3] |
} Osher S, Sethian J. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. {\it Journal of Computational Physics}, 1988, 79(1): 12--49.
|
[4] |
} Sanner M, Olson A, Spehner J. Reduced surface: An efficient way to compute molecular surfaces. {\it Biopolymers}, 1996, 38(3): 305--320.
|
[5] |
} Connolly M. Analytical molecular surface calculation. {\it J. Appl. Cryst.}, 1983, 16(5): 548--558.
|
[6] |
} Richards F M. Areas, volumes, packing, and protein structure. {\it Ann. Rev. Biophys. Bioeng.}, 1997, 6: 151--176.
|
[7] |
} Liang J, Edelsbrunner H, Fu P, Sudhakar P V, Subramaniam S. Analytical shape computation of macromolecules: I. molecular area and volume through Alpha shape. {\it Proteins: Structure, Function, and Genetics}, 1998, 33(1): 1--17.
|
[8] |
} Cazals F, Proust F. Revisiting the description of Protein-Protein interfaces, part I: Algorithms. Research Report 5346, INRIA, 2004.
|
[9] |
} Cazals F, Proust F. Revisting the description of Protein-Protein interface, part II: Experimental study. Research Report 5501, INRIA, 2005.
|
[10] |
} Cazals F, Proust F, Bahadur R P, Janin J. Revisiting the Voronoi description of Protein-Protein interfaces. {\it Protein Sci.}, 2006, 15(9): 2082--2092.
|
[11] |
} Akkiraju N, Edelsbrunner H. Triangulating the surface of a molecule. {\it Discr. Appl. Math.}, 1996, 71(1-3): 5--22.
|
[12] |
} Liang J, Edelsbrunner H, Fu P, Sudhakar P V, Subramaniam S. Analytical shape computation of macromolecules: II. inaccessible cavities in protein. {\it Proteins: Structure, Function, and Genetics}, 1998, 33(1): 18--29.
|
[13] |
} Edelsbrunner H. Deformable smooth surface design. {\it Discrete & Computational Geometry}, 1999, 21(1): 87--115.
|
[14] |
} Cheng H-L, Dey T K, Edelsbrunner H, Sullivan J. Dynamic skin triangulation. {\it Discrete & Computational Geometry}, 2001, 25(4): 525--568.
|
[15] |
} Bajaj C, Lee H, Merkert R, Pascucci V. NURBS based B-rep Models from Macro-molecules and their properties. In {\it Proc. Fourth Symposium on Solid Modeling and Applications}, 1997, pp.217--228.
|
[16] |
} Bajaj C, Pascucci V, Shamir A, Holt R, Netravali A. Dynamic maintenance and visualization of molecular surfaces. {\it Discrete Applied Mathematics}, 2003, 127(1): 23--51.
|
[17] |
} Blinn J. A generalization of algebraic surface drawing. {\it ACM Transactions on Graphics}, 1982, 1(3): 235--256.
|
[18] |
} Duncan B S, Olson A J. Shape analysis of molecular surfaces. {\it Biopolymers}, 1993, 33(2): 231--238.
|
[19] |
} Grant J, Pickup B. A Gaussian description of molecular shape. {\it Journal of Phys. Chem.}, 1995, 99(11): 3503--3510.
|
[20] |
} Zhang Y, Xu G, Bajaj C. Quality meshing of implicit solvation models of biomolecular structures. {\it Computer Aided Geometric Design}, 2006, 23(6): 510--530.
|
[21] |
} Baker N, Sept D, Joseph S, Holst M, Mc-Cammon J. Electrostatics of nanosystems: Application to microtubules and the ribosome. In {\it Proc. Natl. Acad. Sci.}, USA, 2001, pp.10037--10041.
|
[22] |
} Holst M, Saied F. Multigrid solution of the Poisson-Boltzmann equation. {\it J. Comput. Chem}., 1993, 14(1): 105--113.
|
[23] |
} Bajaj C L, Xu G, Zhang Q. {Smooth surface constructions via a higher-order level-set method}. ICES Report 06-18, Institute for Computational and Engineering Sciences, The University of Texas at Austin, 2006.
|
[24] |
} Faugeras O D, Keriven R. Variational principles, surface evolution, PDE's, level-set methods, and the stereo problem. {\it IEEE Trans. Image Process.}, 1998, 7(3): 336--344.
|
[25] |
} Xu G, Zhang Q. Construction of geometric partial differential equations in computational geometry. {\it Mathematica Numerica Sinica}, 2006, 28(4): 337--356.
|
[26] |
} Osher S, Shu C W. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. {\it SIAM Journal of Numerical Analysis}, 1991, 28(4): 907--922.
|
[27] |
} Peng D, Merriman B, Osher S, Zhao H, Kang M. A PDE-based fast local level set method. {\it Journal of Computational Physics}, 1999, 155(2): 410--438.
|
[28] |
} Bajaj C L, Djeu P, Siddavanahalli V, Thane A. Texmol: Interactive visual exploration of large flexible multi-component molecular complexes. In {\it Proc. the Annual IEEE Visualization Conference'04}, Austin, Texas, USA, 2004, pp.243--250.
|