
 Would you be willing to be recommended to other journal(s) of this field as a
reviewer?

Yes

Overview Report Outstanding Good Fair Poor Very
Poor

Content

 Is the work relevant?

 Is the work original?

 Are the methods/proofs/experiments/etc. sound
and convincing?

Presentation

 Is the abstract an adequate summary of the work?

 Are the background and related work(s) clearly
introduced?

 Are the methods/proofs/experiments/etc. properly
stated?

 Are the conclusions clear and adequate?

 Are the references adequate?

Reviewer 2:

Reviewer Affiliation Alibaba Group

Manuscript ID:

Manuscript Type: Original Article

Keywords: Misconfiguration , Workload-related , Static analysis , Runtime monitoring

Speciality: Software Systems

Date Submitted: blinded

Manuscript Title:

Date Assigned: 24-Apr-2022

Date Review Returned: 21-May-2022

Journal of Computer Science and Technology

 Is the presentation clear to the relevant audience?

 Are the overall organization and length of the
manuscript adequate?

 Is the English satisfactory?

Summary Report

 Quality

Not significant

Priority of Publication

If accepted, should the
manuscript be prioritized for
publication?

Accepted as

 Confidence of your evaluation

3(Confident)

 Recommendation

 Accept without revision

 Accept with minor revision

 Review again after major revision

Resubmit after major revision

 Submit to another journal

 Reject

 Would you be willing to review a revision of this manuscript?

Yes

 No

Comments

Confidential Comments to the Editor

Comments to the Author

This paper tackles a practically relevant and challenging problem:
 preventing misconfigurations in production environment.

 In particular, it focuses on the workload-related misconfigurations,
 whose constraints can only be known at runtime.

To solve this problem, this paper conducts empirical study on four

 popular open-source software systems and summarizes five code patterns
 that are relevant to numerical configuration parameters.

 It then proposes WMWatcher, which can analyze the target software's
 source code, identify certain code patterns, and generate probes for

 "branch interactions" with configuration parameters.
 At runtime, WMWatcher utilizes these probes to generate runtime statistics

 for system admins.
 Last but not least, WMWatcher is implemented and evaluated on real

 open-source software systems, with reasonable extra runtime overhead.

I recommend "Resubmit after major revision" for this paper due to the
 following reasons.

 - This paper over-claims its contribution: there is no evidence showing
 that "WMWatcher could infer the constraints of configuration parameters"

 - This paper fails to justify its significance compared with related work.

====== Over-claim of contribution =====

The introduction lists as contribution that "WMWatcher could infer the
 constraints of configuration parameters under current workload for system

 admins" (Page 3).
 This is supposed to be a major contribution of this paper, as well as

 a major novelty against existing work. I was curious to learn the rationale
 behind the computation of such constraints.

 However, later sections suggest that there is no automatic inference happening.
 WMWatcher stops at the monitoring phase, and the actual constraints is

 manually infered by system admins.
 For example, none of the four evaluation cases in Sec. 4.4 shows the output

 configuration constraints.
 Such over-claim of contribution significantly weakens this paper.

Another inconsistency is in the introduction.

 This paper uses MySQL's "thread_stack" parameter as a motivating example.
 However, it is not shown throughout this paper whether WMWatcher is able to

 prevent such misconfiguration.
 In fact, it requires certain domain knowledge to relate the "thread_stack"

 configuration with the runtime resource usage of MySQL.
 This is beyond the capability of WMWatcher, which aims to identify and probe

 configuration-related variables defined in the software source code.
 As such, the motivating example indeed raises a challenging issue, but

 this paper does not seem to solve it.

A good way of improving this paper is to clearly define its scope in the revised
 version, properly position your work among prior work, and provide a motivating

 example that matches WMWatcher's workflow.

===== Significance compared with related work =====

This paper aims to tackle misconfiguration prevention and compares with
 existing work in this field.

 However, a major challenge with preventing misconfigurations is how to compute
 sound constraints that can benefit non-expert users.

 Existing work, no matter based on static [17] or dynamic [24] techniques,
 follow the setting as described above.

As a comparison, this paper tackles misconfiguration in a different setting.

 Unlike previous work, it implicitly assumes that users possess sufficient
 domain knowledge of the open-source software they are using, such that
 the proposed WMWatcher outputs status monitoring instead of configuration

 constraints directly.

Use the below rating options to rate the reviewer on this submitted review. The rating
options have corresponding numerical values which are averaged to determine an “R-
Score” for reviewers. The “R-Score” for a reviewer displays as part of the reviewer
search results to give you an indication of past performance.

Timeliness

Review was on time (Rating 3.0)

Review was slightly delayed (Rating 2.0)

Review was severely delayed (Rating 1.0)

Quality Assessment

This is a significant difference with related work, but is just skimmed over in
the current writing, which may lead to misunderstanding.
This paper could be improved by thoroughly explaining the difference in its
assumptions, and by justifying this assumption / properly limiting the scope
of this paper.

Aside from the potential misunderstanding, a more severe issue in the current
writing is that this paper fails to compare with related work on monitoring, or
performance/parameter tuning. It would be much easier for readers to understand
this work if this paper clarifies how it innovates in the status monitoring
mechanism, or whether that is a contribution at all.

===== Minor comments =====

Sec. 2.2 "Handling Types After Interaction" is the major contribution of the
empirical study, which further motivates the whole WMWatcher work.
The current writing explains well how each pattern could be recognized.
But this only provides engineering detail, not design insight.
This paper could be further improved by explaining the semantics implications
of each syntactical pattern, as well as what kind of tradeoffs the user may face
in each category.

Sec. 3.5, "monitoring status", should have been a highlight of this paper,
since it is the final step of misconfiguration "prevention".
Yet, the current writing is not convincing.
For example, for the "Hard limit" pattern, WMWatcher records the v_vs that
is mostly close to v_c (Sec. 3.5). How does remembering a single value help
admins make the tradeoff, e.g. between efficiency and availability?
Further, how does this seemingly trivial metric compare with existing work
on performance tuning?

Reviewer opted in to receive recognition on Publons? (Yes/No answer required)

 Yes

No

