Completed
Review

Reviewer 1

Reviewer Affiliation

Manuscript ID:
Manuscript Type:
Keywords:
Speciality:

Date Submitted:
Manuscript Title:
Date Assigned:

Date Review Returned:

Overview Report

Content

University of Massachusetts Amherst, Department of Electrical & Computer

Engineering

Computer Architecture and Systems

blinded

12-Jan-2022
28-Jan-2022

Is the work relevant?

Is the work original?

Are the methods/proofs/experiments/etc. sound

and convincing?

Presentation

Is the abstract an adequate summary of the work?

Are the background and related work(s) clearly

introduced?

Are the methods/proofs/experiments/etc. properly

stated?

Are the conclusions clear and adequate?

Are the references adequate?

Outstanding Good Fair Poor

v
v
v
v
v
v
v
v

Very
Poor

=9 Is the presentation clear to the relevant audience?

r=q Are the overall organization and length of the
manuscript adequate?

rzq Is the English satisfactory? v

Summary Report

r=q Quality

Moderately significant

Priority of Publication

If accepted, should the
manuscript be prioritized for No
publication?

Accepted as

Regular Paper

=1 Confidence of your evaluation

5(Absolutely
Confident)

r=; Recommendation
Accept without revision
Accept with minor revision

v" Review again after major revision
Resubmit after major revision
Submit to another journal

Reject

=] Would you be willing to review a revision of this manuscript?

¥ Yes
No
Comments

Confidential Comments to the Editor

An interesting approach to solving All SAT, but not very well explained. A major revision is
necessary.

Comments to the Author

The paper describes an important and interesting problem of finding ALL solutions to a given SAT
problem, and proposed an original method based on semi-tensor product matrix representation.
The first part (1/3) of the paper is written relatively well (although is not precise enough in terms
of definitions and explanation). However the middle part, pages 5-7, suffers from serious
problems with the English language. English needs a serious improvement.

Part I, pages 1-4.

- The authors frequently use the term "circuit form" but never define it or illustrate it with an
example (is Fig. 4 and example of such a form?). It is clear to an average reader in this area what
CNF is, but not what the circuit form; this have to be clearly defined.

- Page 2 and later in Results, p. 11: what do you mean by "Overall, our method can reduce the
total number of solutions by 50.6%" ? This is not an optimization problem where you are trying to
reduce some function, but you are trying to find ALL solutions. So saying that you are "reducing
the total number of solutions" sounds funny, and is incorrect. Please explain this.

- p. 2 Notations: item 20 "Rt is all matrices with dimension t". Is all? Do you mean that it is class
of matrices with dimension t?

- Page 3: eq (1), what is S ? It would be very helpful to say that this is how you represent a
Boolean variable. Without this, it is not clear how to interpret your formulas that have a matrix
multiplied by variables P, Q, etc. It is later mentioned on p. 4 that "S is a logic variable", but this
should be done earlier, first.

- Page 3: In Table 1 you should switch the columns representing conjunction and disjunction, to
be consistent with the text above the Table, and eq (2); they should appear in the same order.

- Proposition 3 should be illustrated with an example (although this will become more clear after
you clearly specify how P is represented as a matrix (like S).

- Page 4, Theorem 4: What is D_k ? Some kind of set, never defined.

- Page 5 - explain the concept of a "cut", it is not clear. You talk about the cut algorithm but never
explain the notion of a cut.

- pages 5 + incorrectly use the term "isomorphic". Instead it should be called "homogeneous", in
contrast to "heterogeneous" network representation. And you should clearly explain what you
mean by this (that this is related to the type of nodes in the graph: either homogeneous, with
only AND nodes, like in AIG, or heterogeneous, with OR and AND nodes).

It would be helpful to have one, however simple, example showing how your method finds all
solutions, and clearly show those solutions. I have read the paper very carefully and couldn't
really grasp how all solutions are generated by your method.

Finally, you should clearly state that your method is applicable only to small circuits, as clearly
demonstrated in the results table.

English corrections:

P. 4, Theorem 1: ."...logic variable .." --> "logic variables" (plural)

p. 5, the second paragraph in Section 3.1 has to be rewritten in proper English. (... which are its
matrix form ...). In fact this entire section should be rewritten.

p. 8 "computed to a matrix form" --> "converted to a matrix form"
But there are well too many corrections to include in this review. Please see the attached copy
with my notes and corrections. Symbol E in circle means English correction is needed.

trix multiply in any dimension.
i P i ——)

v

Cousider two matrices X € R™*" and Y € R"9,
For X - Y basic condition is that i = p, what is an in-
surmountable obstacle for many applications. Chen [23]

proposed a semi-tensor product. which can conduct ma-

B & RP*% then semi-tensor product can be defined as:
AxB= (A2 ‘,,,.)(B:-:flﬂ,,,,)

where I and € denote identity matrix and the least

—

common multiple of n and p, respectively. For these
oot 45

'oﬁ-m\—a;amnc

1)when n = p, A x B is equivalent to A- 8

2)when n = tp, we have multiple relations A =, B
respectively

Definition 1: Let X be a row vector of dimension
np, and Y be a column vector with dimension p. Then
X7, which
Define the left semi-tensor product,

we split X into p equal-size blocks as XA
are 1 x n rows.

denoted by x, as

XxY= X'y €R".

u:l‘

Proposition 1. Let A € M, , and B € M. If
q = km, then

Ax B=ABa)

Proposition 2. Assume A € M, ., is given.
1.Let Z € R' be a row vector. Then

AxZ=Zx (I} ® A);
2.Let Z € R' be a columan vector. Then

ZuwA=(LoA)xZ;

2.3 Matrix Expression of Logic

In this section, we consider the matrix expression of
formulas of logic. Under matrix expression, a general
description of logical operators is proposed and @l\o
solve some problems in SAT. By using the semi-tensor

o 1 AT
A | J —
\) = . ‘\ I~

0 B

D
Let A € R™*" and

| G

_//'/(/,’{l ‘

V,f)

/4

> ; (0\‘

P+ ')

product of matrices, the logic synthesis can be simpli-

. \—/ rip .
fied a lot. The trath table of conjunction, disjunction,

implication, and equivalence is as follows:

o l it ch Co s ’tb
Table lqi)ulh)Io of Ih:mn blumumn),

P Q Pv0 FAQ P»Q p«u)
e T o

T R | T ¥ F r
F T' i F ' F
F F| F ¥ b) T

To use matrix expression we denote

4 (
et} A
Definition 2: Consider one fundamental unary op-
erator: Negation, =, and four fundamental binary op-
emtors: Disjunction, V; Conjunction, A; Implication,
. Their structure matrices are as

—+: Equivalence,

Jollows: a RW

e 3

M, = M, [l "]

pat: Wan Y
%f“‘w ~- Anfte -

r %\ [ooo 1110
Ahf““P[ﬁllJ‘“‘ H\Lnun] 2

AL=QL+.F“" M, =)= [1??“

aree”
We use P,Q, ete. as logic variables, That is, assume

r(‘-, AN T

they can take value from S in (1), A straightforward
computation shows that

\\Proposltlon 3. 1.For unary operator -, we have

’Lcto be a bmury op«mlm(v A, =r.or «). Then

PoQ = M, PQ,
; gl 1\ ﬂ#“"’"
where M, are defined in (2). 1
(i
Using the structure matrices and the properties of
the semi-tensor product, logical relations can be easily

proved. We can also provide a canonical form of the

-_—_‘_'
expression. To do this we need some preparations:

(\) \/

\D 3_.

o

& ~P=MP)_ L o 15§
) \% o H \r(‘fv!t,‘.l &l

I

be @

J ﬁ_,«g{

ﬁf’]Q

v

P

.
J

Ja Maeikw A”‘

Y, o /u'r. ¢

S

1
\

a3

wo logic matrices and &is a logic varia
L= 1,2, and M, My are also logic Tintrice

by) qovon

Definition 3: 4 2 x 2 matrir is ealled a logic

matrir if all its columns are elements in S, :

Al logic operation matrices, say M, AL, My, M,.
A

and M, are logic matrices, w My and M, are

. Then MLS,

. At the same

time, we define a matrix, ealled the power-reducing ma-
—— /\

—

trix. which can make S% = M., S, as

10
00
00
01

o

et M, =
2 '\A‘v

A lngir/cxpn::iim may have value-assigned logic
var iubh-s.-’Ym- logic variables and-they are conneeted €
by logic operations. In STP we restrict the operations
to =+ v A=, They are mmph-t(’(which means
any logic operators can be expressed by them, so the
restriction is_non-necessary. But it makes the state-%
ment easily. In a logic expression, a logic variable w7
constant 1f its wilue is assigned in advance, it is called /
a free variable if its value can be arbitrary [24]. Using |
this concept. we have

Theorem 1: Any logic expression L(Py, Pa. ..., P,)
with free logic mn’ab@’;.l’z.....l’. € I).’ can be
pressed in a canonteal form as W ¢ ‘[/M 7

¢t

er-

L(A.Py ... P) = M P P>...P,.

where My is a k x k* logic matrir,

Now we use the following example to show the ap-
plication of Theorem 1 and define this computation as
the basic result seeking (Brs).

Example 1: Person A said that person B is a liar,
person B said person Cis a liar, and person C said that
both persons A and B are liars. Who s o liar? [21]

Denote A: person A is not a liar: =A: person A is a

liar. Then the logical expression of the statement is

Lo

th.,.Cun

(A ~B)A(B & ~C)A(C & ~AA~B).
Wiy ad) tec'+B'OC Ly ¢ =
A

Its matrix form, L(A, B,C), is
MA(M,AM, B)(M,BM,C)(M.CM, M,AM,B).

Its canonical form can be cmn_pnl_ql as
. [oooooroo],
L(A.B.C') = [I 111101 ‘] ABC.

L is true only if,

o[-l

So the conclusion is that A and C are liars,

_—-

2.4 Boolean Satisfiability

Boolean satisfiability problem is to determine
whether there is a combination of values of one or more
groups of variables throngh reasoning. which can make
the value of the formmla true. The algorithms for solv-
ing SAT problems are divided into complete algorithms
and incomplete algorithms. Complete algorithins can
always find all assignments that satisfy the instances or
prove the unsatisfiability of the instances. Incomplete
algorithm which is the heuristic algorithin improves the
efficiency of solving the particular SAT problem with
one solution. The boolean propositional formula can
be expressed as ONF or cirenit information. —

The problem-solving method based on SAT can be
divided into three steps. namely, encoding, prepro-
cessing, and SAT decision. Encoding means that the
problem is represented by propositional logic throngh
some form of model description. Preprocessing is to
make some form of trausformation or simplification of
the original formula in order to reduce the satisfiabil-
ity judgment time of the formula after _Pmmmmiug.

a

SAT decision uses reasoning technology to determine

whether the formula is SAT or not.
3 Semi-Tensor Product based ANSAT Solver

In this section, we present the proposed cut algo-

rithm for the STP-based solver. The computation pro-

(‘: 1\ "\.\{, }}"4\
Jaty
\. =N) ¢ b

' \

az® - (it

—~—

N)

How |

vZ(aifl'Jd.zé‘

conss overview i given first, and the algorithm, as well

as an example, is demonstrated.

3.1 Overview

The main computation process is shown in this sub-
section, The input is a CNF or cirenit information C'1,
which is also called the pmpmili'uunl il\;lmu‘m (l): The
output is a string in input variable order (8) that con-

sists of {0,1, -}, /7

/
‘

an original civenit Oc and returns the final solution of
—

the ent cirenit F5. The ent algorithm can solve more

complex problems at the sane time and compute solu-

tions as fast as possible. Through this algorithm, we

find that the SAT solver should be guided o solve ac-

cording to the topological order of the eircuit.

Algorithm 1 cut algorithm

Input: Original circuit Oc
Output: Final solution Fs

. |

F

t

N e (Q , S
First, we map the all elements in 1o Lm f(), Lm() 1 entsize (S), number of gates (), number of output > 3
o « 0) «O¢ S N O
3 and Le(), which arelitsmatrix form, corresponding ma- 2 (., l 2 g 3 <
f . trix and variables, throngh the parser. We can obtain 3 Targel «the value of the SAT of the root node ¥ 3} »
8 iy 1 fori= 1100 do il 5)
the prevequisite for the ealenlation of the semi-tensor 5: for j=1toG do “'r\‘-
product of matrix and the generator of the solution L if The parent node is Target then
7: Set.result(i)(j) «the value of the SAT
by Lonf(). Selective computation is earried ont by of all child nodeo e
determining whether the clements in Lm() are logic 8: Target +«the value of the SAT of the
child or sibling node
matrices, and assign the values in Lm) and Lo() to 9 ond "-" ~P
ov\AL g y
Fresult() which n&\n the }uwl ions. Then get 10 end for "3‘
. : : - 2 11 end for 4
() & & the final solutions S by mapping the Lresult() 1o § 12. Fs «sort Set.result()() in the order of input t_ 3
\) .P- \ from the result secking. Note that the ontpat string is 15 return Fs — l\
\/ 3 Y .]
4 first assigned —, .., =, If the value of Lresult() in its A law 4 94— I¥Y o (L
e ll\} j(l.}- —)
.. - v‘l”.“"”j : We first sen) the original cut size S where-thede- | =
corresponding position equals “~", the § in the corre-) —
fanhoA20 set the number of gates G and outputs O, / £
sponding position will remain unchanged. If the value el ' (,C-
= > rof S the , which is 1, -
of Lresult() in its corresponding position equals *1 aud assign the value of SAT of the root, which is /
I and the value of § equals “1° or “~*, the § in the cor- '* the temporary quantity Target (lines 1-3).© Then
,'-'A‘ ' responding position is the value of Lresult(). If the the computation of the SAT is carried out from top to
value of Lresult() in its corresponding position equals bottom, and according to the S, the SAT result of the
' Y’A \’\vw} “0" and the value of § cquals 0" or “~", the 8 in the Parent node in CUT s obtained. And the values of
¥ g SLL o &
QY‘ - \ corresponding position is the value of Lresult(). - the child or sibling nodes are assigned to a set of re-
' sults Setresalt()() and Targel, so as to facilitate the
\ 3.3 Cut next computation (lines 4-11). Finally, the results in

Intuitively, solving a sub-problem is much faster
than solving the original problem because there are
fewer or no decisions needed to solve in sub-problems.
Therefore, we propose a eut algorithin to simplify the
computation. The psendo-code of the eat algorithm is

shown in Algorithm 1. The euf function takes as input

Setoresult()() are sorted according to the input order
to find consistent solutions which are final solutions Fs
(line 13).

Before cut, for a n-varable problem, the size of the
structure matrix is (2x2"). and the corresponding time
{ is uﬁml o O2"). When the cut

[

£ vt 1t

2y].Mr-’

g;(A .(‘s/\\

gl

" 3
G Ao oh ()t 2
size is set to dvfnull/\\'hirh is 2, 'the size of the strue-
ture matrix to be computed is reduced to (2x4). So
T(u) is equal to O(4n). Overall, when the cut size is m

(m < n), our proposed algorithm can effectively reduce
T'(n) from O(2") to O(n2™),

‘ :‘Ur

We first define the size of § (s) and the size of line

3.3 CNF Solving

which represents the number of clauses in 1. Then tra-

rse vest of I, create its matrix form (Lm f()) and cor-
responding matrix (Lm()) and its position correspond-
ing to the number (Lnum()). For a line i. if Lmf(i)
equals “A”, the Lm(#) will multiply Lin(i+1). All com-
putation result will be stored in Lresult() which based
on Overview.

During matrix mapping, we lmwM oach clauso to
map the matrix form of the STP. ﬁ‘or a mnnblo we fur-
ther divide it into two cases that are positive or nega-
tive. In terms of a variable is positive, its matrix form is

“MyA" On the contrary, if the variable is nq,mnc its
matrix form is “M, My A™ In addition, we define Lm()
as a matrix set. Every matrix set correspondingjeach
line can be computed as one matrix (Result. M()). For
the basic result secking (Brs). please refer to Example
1. At the same time, we store the absolute value of
each variable in a number set as Lnum(). As for the
cut, we can consider Linf() as a cirenit and every part
before “A” as a smaller cirenit. According to every
computed result of Result M(), the result secking can
be completed with the number of Lnum().

The input is a set of matrices which is composed
of Result.M(). The outpnt is a string in input order
(S) that consists of {0.1, —}. First, we define n as the
size of Result. M(). Then for a ¢, each Result. M{i) are
computed as basic resnlt seeking (Brs), where the first
half of the result is the first variable result and the last

of the result is the input to Result. M(i +1) . The

7

final result is m{imvmvtkm ol"c\'or__\'__ﬁml ln:\l[,af the

Result M(1).

3.4 Circuit Form Solving

Common SAT solver is usually designed based on
CNF. To solve the SAT problems of the circuit, it is
necessary to convert the Gate-level Netlist of the cir-

cuit to the corresponding CNF. However, in the process

of transformation, the circuit structure information will |

be missing, especially the topological order between the |
pord e icraccindabss

signals within the circuit

be covered, and all the sig-
f CNF. The circuit-based
b&]’wr follows the lopolog) of the circuits, so it can

nals will become

solve the SAT problems more effectieely. Y / f"c‘&j!ﬁ
Vi * T

3.4.1 Basic Solving

The circuit information expression contains com-
plete logical operator which consists of {=, A, v, 5. -l
Expressed by !, { }, (). [] and < >~
“NAYBC])" means “M, M. AM, M, BC™

. such as

We first pmscxlhc expression and create its matrix
form (Eonf()) and its corresponding matrix (E.m()).
Finally, we use the Brs to find all final solutions. When
the circuit structure becomes larger, the corresponding
number of matrices to be computed becomes larger.
Therefore, the hww is limited to the computa-
tion of small-scale circuits, that is, the cirenit compu-
tation after the cut.

3.4.2 Bench Solving

The bench file is an input form based on look-up ta-
— e

ble (LUT), and by analyzing the structure of the bench
——VA T ;
file, we find that the bench file has a specia
acteristic. . The bench file can be divided into three
parts, one-s PLogee is PO, and-owe’ is LUT. For the
LUT part, we can regard it as a sub-circnit. We take
the bench file as l)é input, in fact, the input automati-

cally fut§tjle circuit into multiple sub-circuits and con-

Cur

<

.

i’

.‘.,-Ar

-

)

L
\)c;‘

pd“g/ and heterogencous networks have the same computing

A

-

n«'lf each sub-circuit, and the cut size (S) depends on
the size of the LUT. After parsing the bench file, the

circuit is converted to S-input logical \ollnsls Then

logical Netlists are provided to our solver as input.

It should be noted that the conversion of the input

of the circuit form to the CNF is unique. that is, a cir-
R o - e ————

cuit can only be converted into the corresponding CNF.

but one CNF can be converted into a multi-form cir-

cuit structure. Therefore. when converting CNF to cir-

cuit form, it is important to choose the optimal circuit

structure. At present. all SAT solvers are limited to iso-

<'L. morphlc logic networks. In STP; fsmnorphls mfé’(’)ﬁ
—_—_—

level. But for the number of logic levels and gates of
a network, the expression of isomorphic form is much
larger than that of heterogeneous form. The advantage

of our method is that it can support heterogeneous net-

work computing. and for networks with the same logic.
_____/

& DR no«s
we prefer to use hete c-ncoua netw

————
compute because they are faster. ~ ﬁ_)ot Aeon s

\j\,MM'W"ﬁ

Iu this subsection. we use the MCNC benchmark

< as circuits to

3.5 Example

circuit €17 as an example to demonstrate the STP-
based AUSAT of the proposed method. The open-
source logic synthesis framework ALSO! maintaius sev-
eral commands for file conversions. Given a well-known
AND-Inverter Graph (AIG) as an entry, we can obtain
its corresponding C\IF and circuit fonn The CNF-
based method of €17 can be expressed y 11 variables
and 18 clanses. The CNF of ¢17 is shown in Fig.2.

I &7 |

yol? Lokl

penn‘l u/ INPUT(n1)

2630 INPUT(n2)

2830 INPUT(n3)

::: < INPUT(n4)

3.790 PIPUT)

S¥Ea QUTPUT(poD)

aroe OUTPUT(pol)

3390 n0 = gnd

:;’"" n6 = LUT 0x8 (n1, n3)

£5a n7 = LUT 0x8 (n3, nd)

41080 n8 = LUT 0x2 (n2. n7)

5890 n9 = LUT 0x1 (n6, nB)

s80 n10 = LUT 0x2 (nS, n7)

:": n11 = LUT Ox1 (n8, n10)

2 Po0 = LUT Ox1 (n9)

40 pol = LUT 0x1 (n11)
Fig.2. cl7.cnf Fig.3. c1T.bench

Based on the proposed process shown in Overview
and CNF Solving, we find that the matrix form of the
fo[mh line is “MyA; M, A2", and the corresponding ma-

trix is shown as follows.

1110 01
[0 00 l] A [l o] A
The Result.M(1) of Brs is *117, “10%, and =017
", Az can be “17 or “0". when A,
is “0”, Az can only be “17. The Result.M(2) of Brs is
“0" As a result, the final result is “117, 10" and “00"

Hence, when A, is 1

In all result, the result of fourth line is *-11- - - - - - -
------- " As for every line

whom 7
in CNF, we can connect thvu) ‘with the cut algorithm
by regarding the whole CNF as a parent node and cach
line as a child node.

The circuit-based method of €17 is shown in Fig.4.

The basic solving's matrix form of ¢17 can be expressed
as follows, respectively, where is the original logic net-
work and the heterogeneous logic network, in which

1,2.3,4,5 are input and pol, pol are (ﬁéi@ontput.

7

U

po2, pod a terogeneous dutput. \J
"((—'%' s H > \“\

1Cha Z. ALSO: Advanced logic synthesis and optimization tool. https://github.com/nbulsi/also

’

f(‘

\s‘“

W2 ¥

Consider two matrices X € R™*" and Y € R'™ ¢,
For X - ¥ basic condition is that n = p, what is an in-

surmountable obstacle for many applications. Chen [23]

prg (THQ
(P4 @)

3

product of matrices, the logic synthesis can be simpli-
e —————— e .
fied a lot. The truth table of conjunction, disjunction

implication, and uminlvnu is as follows:

I

{ // { \ L
ewitih Colpmn
proposed a semi-tensor product, which can conduet ma- Table uth _}A. of :’i}n:\n Ope r?u'.{: T,b 5 O A
1 Iti i i 1 - mxn V \/ /" yeues i
carX BUREY I ary onentin: ev e Pr aol P Q PQ Piq PoQ Pod f:f’l =
B & R then semi-tensor product can be defined as: Tl IT T T T
T F T F F F)
AxB=(AD L)B& Iy, I, 2L T F T F
4 i F F I F L T
where I and £ denote identity matrix and the least
common multiple of n and p, respectively. For these To use matrix oxprm«ion we denote
Ppmmipisonss ottt
operations, we can assume LA
Aar \
[L)when n = p, A B is equivalent to A- B 7
R - H [‘-’]} o
2)when 1 = tp, we have multiple relations A -, B {
respectively Definition 2: Consider one fundamental unary op-
Definition 1: Let X be @ row vector of dimension erator: Negation, -, and four fundamental binary op-
np. and Y be a column vector with dimension p. Then erators: Disjunction, V; Conjunction, A; Implication,
we split X into p equal-size blocks as X' ..., X?, which ~+; Equivalence, . Their structure matrices are as
are 1 x n rows. Define the left semi-tensor product, Jollows: Ane § 8 bt
denoted by =, as PR
deno, u e My =M. [l 0] -._
\ 0
XxY =%’ X'y eR" Efrral’™ o Al R
R =% '
17\ [Yooo 1110 = il «
' M. = M)\\= } \I,¢ = \Iv [] /
Proposition 1. Let A€ M., and B € M, .. If N (le 11 \ 0oul *‘-4 Lonk I
q = km, then 1011 1001 A G
M= \)= [0 Valp|: Me _\\1.‘\ SHtio . ,
Ax B=A(B=z i) ,
We use P.Q, ete. as logic variables. That is, assume
Proposition 2. Assume A € M,, ., is given. they can take value from S in (1). A straightforward
1.Let Z € R be a row vector. Then ‘ computation shows that
‘=~ Proposition 3. I.For unary operator -, we have
AxZ=2Zx(I;®A); s ‘P 5 e “? =
T ~P=MP)_ L peU]
2.Let Z € R' be a column vector, Then ;*\\r e O Polien X Ry \t
< .:_\'2.Il-l a be a binary operator(V, A, =, or). Then) f ~
ZuA=(Lo A Z; , o | T Rt .
\ & PaQ = M, PQ, ¢ é
2.3 Matrix Expression of Logic \ § : pj\H ﬂ)tl\v‘f / i

were M, are defincd in-(2);

-

Q___—-/

Ising the structure matrices and the properties of

In this section, we consider the matrix expression of
————————

Gipsiaih

formulas of logic. Under matrix expression, a general the semi-tensor product. logical relations can be casily

description of logical operators is proposed and @o proved. We can also provide a canonical form of the

'_—‘-‘i
expression. To do this we need some preparations:

(O \/

solve some problems in SAT. By using the semi-tensor

