We use cookies to improve your experience with our site.

个性化新闻推荐:述评及实验研究

Personalized News Recommendation: A Review and an Experimental Investigation

  • 摘要: 1.本文的创新点
    本文对以往的个性化新闻推荐系统,包括基于内容过滤、基于协同过滤以及综合二者的个性化推荐技术,进行了全面地系统地研究,并且讨论了个性化新闻推荐中所存在的关键性问题,例如如何处理海量新闻数据的推荐、如何利用已有资源进行高质量的用户建模、基于何种策略进行新闻文章的选择和排序、如何展示推荐结果来吸引更多的在线读者等等。在此基础上,本文提出了多种可能的解决方案以改进个性化新闻推荐系统的功能及性能缺陷。通过在实际的新闻数据集上所进行的实验性的探索,我们更加深入地了解了影响个性化新闻推荐的不同因素,并且为广大对个性化新闻推荐有研究兴趣的读者提供了有价值的研究参考。   2.实现方法
    (1)海量新闻数据的处理:为了突破大数据量的性能瓶颈,我们提出了“位置敏感哈希+层次聚类”的文章聚类的方法,极大程度地减少了在分析文章内容时所做的相似性比较,从而提高了文章聚类的处理速度,而且层次聚类的方法为后续的处理过程提供了极大的便利。
    (2)高质量的用户建模:本文讨论了基于内容的、基于协同过滤的、基于命名实体的用户建模方法,以及三者的有机结合,并且讨论了用户兴趣的转变对个性化新闻推荐的影响。
    (3)新闻文章的选择与排序:本文深入探讨了新闻文章的多种选择方式,包括Bandit选择模型、子模函数选择模型以及半监督学习的选择模型。另外我们对新闻推荐结果的排序方法进行了深入的探讨,包括基于属性的排序、基于用户偏好的排序以及基于用户群组的排序。   3.结论及未来待解决的问题
    本文通过对已有的个性化新闻推荐方法及其中存在的诸多问题进行分析,提出了多种可能的解决方案来优化个性化新闻推荐过程,并且通过在实际的数据集上所进行的实验探索,验证了我们在文章中提出的诸多解决方案的有效性。

     

    Abstract: Online news articles, as a new format of press releases, have sprung up on the Internet. With its convenience and recency, more and more people prefer to read news online instead of reading the paper-format press releases. However, a gigantic amount of news events might be released at a rate of hundreds, even thousands per hour. A challenging problem is how to efficiently select specific news articles from a large corpus of newly-published press releases to recommend to individual readers, where the selected news items should match the reader's reading preference as much as possible. This issue refers to personalized news recommendation. Recently, personalized news recommendation has become a promising research direction as the Internet provides fast access to real-time information from multiple sources around the world. Existing personalized news recommendation systems strive to adapt their services to individual users by virtue of both user and news content information. A variety of techniques have been proposed to tackle personalized news recommendation, including content-based, collaborative filtering systems and hybrid versions of these two. In this paper, we provide a comprehensive investigation of existing personalized news recommenders. We discuss several essential issues underlying the problem of personalized news recommendation, and explore possible solutions for performance improvement. Further, we provide an empirical study on a collection of news articles obtained from various news websites, and evaluate the effect of different factors for personalized news recommendation. We hope our discussion and exploration would provide insights for researchers who are interested in personalized news recommendation.

     

/

返回文章
返回