We use cookies to improve your experience with our site.

用于盲目图像复原的基于粒子群算法的支持向量回归

Particle Swarm Optimization Based Support Vector Regression for Blind Image Restoration

  • 摘要: 本文提出了一种基于群智能的支持向量机(SVM)参数优化方法, 以用于盲目图像复原。本工作中, SVM被用来求解一个回归问题。支持向量回归(SVR)被用来从已观测到的有噪声的模糊的图像中得到真实的图像匹配。本工作采用粒子群算法对其进行参数优化, 并使用复原误差函数作为粒子群算法的适应度评估函数。本文提出的方法尝试根据模糊的类型和噪声的强度来对SVM的参数进行调整, 并通过实验验证了它的有效性。实验结果表明使用该SVM参数优化方法可以得到比传统的SVR以及其它用于盲目图像复原的方法好的表现。

     

    Abstract: This paper presents a swarm intelligence based parameter optimization of the support vector machine (SVM) for blind image restoration. In this work, SVM is used to solve a regression problem. Support vector regression (SVR) has been utilized to obtain a true mapping of images from the observed noisy blurred images. The parameters of SVR are optimized through particle swarm optimization (PSO) technique. The restoration error function has been utilized as the fitness function for PSO. The suggested scheme tries to adapt the SVM parameters depending on the type of blur and noise strength and the experimental results validate its effectiveness. The results show that the parameter optimization of the SVR model gives better performance than conventional SVR model as well as other competent schemes for blind image restoration.

     

/

返回文章
返回