基于预算分配的社会网络广告传播最大化算法
Budget Allocation for Maximizing Viral Advertising in Social Networks
-
摘要: 基于社会网络的广告传播已经成为提升品牌知名度、扩大营销的最重要的方法之一。通过分配一定数额的预算,我们可以先激励网络中的少部分用户作为初始用户,然后让他们传播广告来影响其他人。尽管已经有很多工作研究了如何选取这些少部分的用户,还有一个经常被忽略的问题是:如何才能有效的激励这些初始用户。在影响力最大化问题中,每个用户都假设有一个确定的对自己是否愿意作为一个初始用户的估值;然而在实际情况中,用户是否愿意接受一定的激励作为一个初始用户往往是一个随机的过程,而并非是完全确定的。本文研究如何通过社会网络中的预算分配来最大化广告的传播。由于用户的决策往往是随机的,本文采用了概率凸函数来建模用户是否会被激励成为一个初始用户。在该模型下,本文首先证明了找出一个最优的预算分配是NP难的。为了解决该问题,本文提出了一个新颖的离散贪心算法,并且证明了该算法的性能保证;同时,还提出了一些优化的技巧来提升算法的时间效率。通过在不同数据集上的实验可以看出,该算法在可以在绝大多数情况下都可以去的最好的性能,并且远好于其他一些启发式方法。Abstract: Viral advertising in social networks has arisen as one of the most promising ways to increase brand awareness and product sales. By distributing a limited budget, we can incentivize a set of users as initial adopters so that the advertising can start from the initial adopters and spread via social links to become viral. Despite extensive researches in how to target the most influential users, a key issue is often neglected:how to incentivize the initial adopters. In the problem of influence maximization, the assumption is that each user has a fixed cost for being initial adopters, while in practice, user decisions for accepting the budget to be initial adopters are often probabilistic rather than deterministic. In this paper, we study optimal budget allocation in social networks to maximize the spread of viral advertising. In particular, a concave probability model is introduced to characterize each user's utility for being an initial adopter. Under this model, we show that it is NP-hard to find an optimal budget allocation for maximizing the spread of viral advertising. We then present a novel discrete greedy algorithm with near optimal performance, and further propose scaling-up techniques to improve the time-efficiency of our algorithm. Extensive experiments on real-world social graphs are implemented to validate the effectiveness of our algorithm in practice. The results show that our algorithm can outperform other intuitive heuristics significantly in almost all cases.