We use cookies to improve your experience with our site.

神经句法融合

  • 摘要: 分析自然语言的句法结构是人工智能中的一项重要任务。由于自然语言的复杂性,不同的句法分析器往往会产生不同的但互补的错误。我们提出了一种基于神经网络的方法来融合来自不同句法分析器的分析结果,从而产生更准确的分析。与传统方法不同,我们的方法直接将线性化的候选分析结果转换为标准答案。在宾州树库上的实验表明,该方法比目前最好的融合方法有较大的提高。

     

    Abstract: Analyzing the syntactic structure of natural languages by parsing is an important task in artificial intelligence. Due to the complexity of natural languages, individual parsers tend to make different yet complementary errors. We propose a neural network based approach to combine parses from different parsers to yield a more accurate parse than individual ones. Unlike conventional approaches, our method directly transforms linearized candidate parses into the ground-truth parse. Experiments on the Penn English Treebank show that the proposed method improves over a state-of-the-art parser combination approach significantly.

     

/

返回文章
返回