We use cookies to improve your experience with our site.

基于交互偏好模型的群组推荐

GRIP: A Group Recommender Based on Interactive Preference Model

  • 摘要: 推荐系统中大量应用为研究提供一个可以更好地理解用户的工具。群组推荐反映了对多个用户行为的分析,并针对用户的偏好,为小组成员提供他们所关心的事件。目前,大多数现有的群组推荐忽略了成员之间的交互。然而,在群组活动的过程中,交互偏好会极大地影响推荐。当用户的某些未知偏好在一定程度上受到组内其他用户的影响时,问题会变得更加具有挑战性。我们提出了一种基于交互的基于交互偏好的群组推荐方法GRIP。对于组中的每个成员,使用群组活动历史信息和后反馈机制来生成交互的偏好参数。GRIP算法可将偏好交互作用纳入评分预测过程,满足用户的需求。为了评估所提出的方法性能,我们将算法与传统的协同过滤算法进行对比。结果表明,与Baseline算法相比,GRIP方法推荐具有较高的有效性和准确性。

     

    Abstract: Numerous applications of recommender systems can provide us a tool to understand users. A group recommender reflects the analysis of multiple users' behavior, and aims to provide each user of the group with the things they involve according to users' preferences. Currently, most of the existing group recommenders ignore the interaction among the users. However, in the course of group activities, the interactive preferences will dramatically affect the success of recommenders. The problem becomes even more challenging when some unknown preferences of users are partly influenced by other users in the group. An interaction-based method named GRIP (Group Recommender Based on Interactive Preference) is presented which can use group activity history information and recommender post-rating feedback mechanism to generate interactive preference parameters. To evaluate the performance of the proposed method, it is compared with traditional collaborative filtering on the MovieLens dataset. The results indicate the superiority of the GRIP recommender for multi-users regarding both validity and accuracy.

     

/

返回文章
返回