We use cookies to improve your experience with our site.

多请求,少开销:分层计价模式下的数据中心间不确定流量传输

More Requests, Less Cost: Uncertain Inter-Datacenter Traffic Transmission with Multi-Tier Pricing

  • 摘要: 由于云服务提供商通常采用分层计价模式向用户收取数据中心之间数据传输的费用,为了避免传输超时,云用户通常会选择充分高的传输服务等级来保障他们的服务质量。这就引发了所谓的带宽资源"过度占用"的问题,该问题大大增加了云用户的传输成本。考虑到用户往往无法在接入网络运行期业务之前获得其传输的数据量,"过度占用"问题变得愈发严重。在本文中,我们从云用户的角度出发,旨在降低云用户的数据中心之间数据传输的成本,尤其是在用户不能预先知道其传输数据量的情况下。本文的核心思想在于首先将一个长期的传输请求分割为若干个短期请求。然后,针对每一个短期请求,选择最为合适的传输服务等级。最终,建立了一个高效的数据中心间的传输服务等级选择框架。本文将这样的传输服务等级选择问题建模为一个线性规划的问题,并通过李雅普诺夫算法进行在线求解。此外,本文还利用真实的流量数据对此方案进行了评估。实验结果表明文章所提的方法可以最多将传输成本降低65.04%。

     

    Abstract: With the multi-tier pricing scheme provided by most of the cloud service providers (CSPs), the cloud users typically select a high enough transmission service level to ensure the quality of service (QoS), due to the severe penalty of missing the transmission deadline. This leads to the so-called over-provisioning problem, which increases the transmission cost of the cloud user. Given the fact that cloud users may not be aware of their traffic demand before accessing the network, the over-provisioning problem becomes more serious. In this paper, we investigate how to reduce the transmission cost from the perspective of cloud users, especially when they are not aware of their traffic demand before the transmission deadline. The key idea is to split a long-term transmission request into several short ones. By selecting the most suitable transmission service level for each short-term request, a cost-efficient inter-datacenter transmission service level selection framework is obtained. We further formulate the transmission service level selection problem as a linear programming problem and resolve it in an on-line style with Lyapunov optimization. We evaluate the proposed approach with real traffic data. The experimental results show that our method can reduce the transmission cost by up to 65.04%.

     

/

返回文章
返回