We use cookies to improve your experience with our site.

对基于线性回归建模方法的分析与改进:正则化选择

Evaluating and Improving Linear Regression Based Profiling: On the Selection of Its Regularization

  • 摘要: 侧信道攻击在密码设备的安全性分析中占有重要地位。作为SCA的一种形式,建模差分能量攻击的优势是结合了从可控设备中学习特征的建模过程,因而非常强力和有效。由Schindler等人(CHES 2005)提出的基于LR的建模方法,作为一种特殊的建模方法,可以通过即时建模来扩展成为一种近似通用DPA。这种扩展由Whitnall等人(CT-RSA 2014)正式提出,并被称为SLR建模方法。随后为了改进SLR方法,Wang等人(CHES 2015)进一步介绍了一种基于岭回归的建模。然而,固定形式的L-2惩罚项依然限制了这种建模方法的表现。在本文中,我们一般化了基于岭回归的建模方法并提出了新的使用变化形式惩罚项的正则化策略。我们随后从理论上分析为什么不应该在所有情况下都使用恒定形式的惩罚项。概略来说,我们的工作揭示了在侧信道背景下,不同形式的惩罚项如何影响建模过程的作用机制。因此,通过选择一种合适的正则化,我们可以更进一步改进基于LR的建模方法。最后我们通过仿真和实际实验来验证我们的分析。特别的,我们实际实验结果显示在不同的设备中,最适正则化形式是不同的。

     

    Abstract: Side-channel attacks (SCAs) play an important role in the security evaluation of cryptographic devices. As a form of SCAs, profiled differential power analysis (DPA) is among the most powerful and efficient by taking advantage of a profiling phase that learns features from a controlled device. Linear regression (LR) based profiling, a special profiling method proposed by Schindler et al., could be extended to generic-emulating DPA (differential power analysis) by on-the-fly profiling. The formal extension was proposed by Whitnall et al. named SLR-based method. Later, to improve SLR-based method, Wang et al. introduced a method based on ridge regression. However, the constant format of L-2 penalty still limits the performance of profiling. In this paper, we generalize the ridge-based method and propose a new strategy of using variable regularization. We then analyze from a theoretical point of view why we should not use constant penalty format for all cases. Roughly speaking, our work reveals the underlying mechanism of how different formats affect the profiling process in the context of side channel. Therefore, by selecting a proper regularization, we could push the limits of LR-based profiling. Finally, we conduct simulation-based and practical experiments to confirm our analysis. Specifically, the results of our practical experiments show that the proper formats of regularization are different among real devices.

     

/

返回文章
返回