We use cookies to improve your experience with our site.

Seg-CapNet:一种用于心脏核磁共振左心室图像分割的胶囊神经网络

Seg-CapNet: A Capsule-Based Neural Network for the Segmentation of Left Ventricle from Cardiac Magnetic Resonance Imaging

  • 摘要: 1、研究背景(context)。
    图像分割根据灰度、颜色、纹理、形状等特征将每个像素划分到不重叠的区域。图像分割是计算机视觉和图像处理的一项基本任务,是实现目标跟踪、计算机辅助诊断等高级计算机视觉任务的基础。在医学影像中,准确的组织分割可以定量的测量病变的组织形态学参数等病理指标,为临床诊断、治疗和病理研究提供可靠的依据。深度神经网络在医学图像分割方向已进行了广泛的研究,但由于图像对比度差、噪声和区域重叠等原因使得准确地分割仍具有一定的挑战性。
    2、目的(Objective):
    研究目的是在一次训练过程中对多个重叠目标同时建模,以同时分割左心室的心内膜和心外膜。
    3、方法(Method):
    Seg-CapNet由卷积层,胶囊层,全连接层和反卷积层组成。卷积层用来提取图像底层信息,并组成原始胶囊层。胶囊层通过动态路由产生包含目标物体底层和高层语义信息的特征向量。动态路由导致的物体组成部分间的空间位置关系在全连接层中得以恢复。在反卷积过程中,通过跳跃连接加速反向传播过程,从而缩短训练时间。
    4、结果(Result&Findings):
    实验结果表明,Seg-CapNet的平均Dice(Dice Coefficient)提高了4.7%,平均HD(Hausdorff Distance)降低了22%。该模型在保证重叠区域准确分割的同时,减少了参数的数量,提高了训练速度。
    5、结论(Conclusions):
    在本文中,我们提出了一种基于胶囊网络的神经网络模型Seg-CapNet与一个新的损失函数。相较于主流方法,Seg-CapNet不仅可以同时提取左心室的心内膜和心外膜,并在ACDC 2017和Sunnybrook数据上的Dice和HD两种评价指标上也有更好的表现。另外,Seg-CapNet的参数量少,计算成本低且网络结构易于扩展。

     

    Abstract: Deep neural networks (DNNs) have been extensively studied in medical image segmentation. However, existing DNNs often need to train shape models for each object to be segmented, which may yield results that violate cardiac anatomical structure when segmenting cardiac magnetic resonance imaging (MRI). In this paper, we propose a capsulebased neural network, named Seg-CapNet, to model multiple regions simultaneously within a single training process. The Seg-CapNet model consists of the encoder and the decoder. The encoder transforms the input image into feature vectors that represent objects to be segmented by convolutional layers, capsule layers, and fully-connected layers. And the decoder transforms the feature vectors into segmentation masks by up-sampling. Feature maps of each down-sampling layer in the encoder are connected to the corresponding up-sampling layers, which are conducive to the backpropagation of the model. The output vectors of Seg-CapNet contain low-level image features such as grayscale and texture, as well as semantic features including the position and size of the objects, which is beneficial for improving the segmentation accuracy. The proposed model is validated on the open dataset of the Automated Cardiac Diagnosis Challenge 2017 (ACDC 2017) and the Sunnybrook Cardiac Magnetic Resonance Imaging (MRI) segmentation challenge. Experimental results show that the mean Dice coefficient of Seg-CapNet is increased by 4.7% and the average Hausdorff distance is reduced by 22%. The proposed model also reduces the model parameters and improves the training speed while obtaining the accurate segmentation of multiple regions.

     

/

返回文章
返回