We use cookies to improve your experience with our site.

慷慨或者自私?存在恶意攻击风险的链下支付网络中交易转发的权衡

Generous or Selfish? Weighing Transaction Forwarding Against Malicious Attacks in Payment Channel Networks

  • 摘要: 1、研究背景(context):
    可扩展性作为影响区块链在实际应用中发展的瓶颈,受到了研究者们的广泛关注。研究学者们针对对此问题探索了多种机制,其中,一项非常重要的解决方案就是链下支付技术,通过在用户节点之间创建链下支付通道,进行小额高频的交易从而提升区块链的处理效率。当前针对链下支付技术的研究集中在路由算法、交易调度、余额优化、安全和隐私保护等方面,然而在存在恶意攻击的情境下,用户对交易转发的策略选择还没有受到广泛关注,而这会影响链下支付的效率以及长远发展,因此,有必要对链下支付网络中用户个体以及群体的行为特征进行分析。
    2、目的(Objective):
    本文从链下支付网络的参与者个体到群体两个层面来研究交易转发 的行为决策特征,旨在为链下支付网络中的个体收益提升和群体的相互合作激励提供建议。
    3、方法(Method):
    我们构建了链下支付网络的博弈模型,分别利用经典博弈理论和演化博弈论来研究两两之间的交互特征和群体特征。另外,我们引入了零行列式策略以及多种经典策略来分析不同视角下参与者的决策动态。
    4、结果(Result & Findings):
    我们给出了微观视角下两两博弈中,合作和竞争两种策略在不同的参数影响下所形成的纳什均衡,零行列式策略在无限次重复博弈时对博弈对手或者自身收益的控制能力以及在有限次重复博弈中零行列式策略发挥作用时需要具备的条件。在宏观视角下,我们给出了竞争合作两种策略在不同情况下的演化稳定状态以及分析了零行列式策略在种群演化中面对一种策略和多种策略时的演化稳定性。
    5、结论(Conclusions):
    综上所述,我们提出一个链下支付的博弈模型来研究参与者的行为特征,力图对链下支付中用户的收益优化和整体系统设计能够有所启发。我们通过微观和宏观两个视角,利用完全理性的经典博弈论和有限理性的演化博弈论对链下支付中的个体和群体行为特征进行了深入分析,最后我们用大量的仿真模拟实验验证了本研究的有效性。

     

    Abstract: Scalability has long been a major challenge of cryptocurrency systems, which is mainly caused by the delay in reaching consensus when processing transactions on-chain. As an effective mitigation approach, the payment channel networks (PCNs) enable private channels among blockchain nodes to process transactions off-chain, relieving long-time waiting for the online transaction confirmation. The state-of-the-art studies of PCN focus on improving the efficiency and availability via optimizing routing, scheduling, and initial deposits, as well as preventing the system from security and privacy attacks. However, the behavioral decision dynamics of blockchain nodes under potential malicious attacks is largely neglected. To fill this gap, we employ the game theory to study the characteristics of channel interactions from both the micro and macro perspectives under the situation of channel depletion attacks. Our study is progressive, as we conduct the game-theoretic analysis of node behavioral characteristics from individuals to the whole population of PCN. Our analysis is complementary, since we utilize not only the classic game theory with the complete rationality assumption, but also the evolutionary game theory considering the limited rationality of players to portray the evolution of PCN. The results of numerous simulation experiments verify the effectiveness of our analysis.

     

/

返回文章
返回