We use cookies to improve your experience with our site.

HBIR:基于超立方体的图像检索

HBIR: Hypercube-Based Image Retrieval

  • 摘要: 在信息量激增的今天,海量图像的管理和检索是图像处理、识别、搜索领域的一个重要问题。图像检索的主要困难在于图像的底层特征和高层语义之间存在鸿沟,这在本质上是由于计算机对图像的表示方式和人类对图像的理解方式不同造成的。现有的大量图像检索方法都致力于根据图像的底层特征推断其高层语义,试图较好地建立二者之间的对应关系。
    本文提出了一种基于人机交互相关性反馈的图像检索系统。系统的目标是对于输入的查询图像,自动从系统自带的图像数据库中检索出与该查询图像语义相关度最高的若干图像。该系统在传统的基于内容的图像检索方法中加入了用户的相关性反馈(Relevance Feedback),通过用户反馈来提供图像高层语义线索以及用户偏好信息,使得系统能够更好地从海量数据中检索到用户满意的结果。
    整个系统的流程如文中图2所示。系统包括两块核心部分:相关性学习部分和相关性推断部分。相关性学习部分是系统的训练模块以及对用户反馈的更新模块,即通过训练图像以及用户给出的相关性反馈来更新对底层特征的判定规则。相关性推断部分致力于由相关性学习部分给出的判定规则,给出输入的查询图像与系统数据库中图像之间的相关度评分,根据评分的高低给出最匹配的图像。整个系统实质上是基于底层特征的判定规则来给出查询图像与系统自身数据库内图像的相关性评分的,而这些判定规则对应于特征空间中的超立方体,因此本文系统的检索结果实质上是依赖于这些特征空间的超立方体的。
    本文构建的图像检索系统的优势在于能够交互地吸收用户的反馈信息,从而提高了检索结果对于用户而言的满意程度,具有一定的实用价值和应用前景。该系统主要面临的问题在于底层特征的选择会显著影响系统的效率和检索精度,具体分析可参见文章section 5。

     

    Abstract: In this paper, we propose a mapping from low level feature space to the semantic space drawn by the users through relevance feedback to enhance the performance of current content based image retrieval (CBIR) systems. The proposed approach makes a rule base for its inference and configures it using the feedbacks gathered from users during the life cycle of the system. Each rule makes a hypercube (HC) in the feature space corresponding to a semantic concept in the semantic space. Both short and long term strategies are taken to improve the accuracy of the system in response to each feedback of the user and gradually bridge the semantic gap. A scoring paradigm is designed to determine the effective rules and suppress the inefficient ones. For improving the response time, an HC merging approach and, for reducing the conflicts, an HC splitting method is designed. Our experiments on a set of 11 000 images from the Corel database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to some existing approaches reported recently in the literature. Moreover, our approach can be better trained and is not saturated in long time, i.e., any feedback improves the precision and recall of the system. Another strength of our method is its ability to address the dynamic nature of the image database such that it can follow the changes occurred instantaneously and permanently by adding and dropping images.

     

/

返回文章
返回