We use cookies to improve your experience with our site.

下标相关的布尔可满足性问题研究

Satisfiability with Index Dependency

  • 摘要: 本文研究了布尔公式可满足性问题(SAT)的如下特殊情况:在输入的CNF类型布尔公式中,每个子句的变量下标之间有线性算术关系的限制。这种限制可看作是Schaefer定理中研究的公式类型(每个子句的变量的赋值之间有限制)的一个结构化的比照。令k-SAT(m,A)表示满足下列条件的CNF公式:每个子句包含k个变量,其中后面k-m个变量的下标由前m个的下标通过A中的线性方程来决定。例如,若A包含两个方程,分别为i3=i1+i2和i4=i2-i1+1,那么每一个4-SAT(2,A)公式的子句都具有如下形式:yi1∧yi2∧yi1+i2∧yi2-i1+1,其中yj为变量xj或非xj. 我们证明了如下结论:
    1. 若m>=2, 则对任意的A, 限制在k-SAT(m,A)上的SAT问题要么在P内(有多项式时间算法),要么是NP完全的。因此我们得到了一个二分性定理(dichotomy theorem). 我们还证明了对应的技术版本#k-SAT一定是#P完全的,以及对应的优化版本Max-SAT没有PTAS, 除非P=NP。
    2. m=1,也就是说,每个子句中只有第一个变量的下标是自由的。在这种情况下,我们提出了一个一般性的框架和一些方法来构造对应的SAT问题及其变种的多项式时间算法。利用这些方法,我们证明了对于任意的A, #2-SAT(1,A)和Max-2-SAT(1,A)都是多项式时间可解的。这和一般情况下的#2-SAT和Max-2-SAT的情况形成了鲜明对比。对于固定的k>=3, 我们发现了一大类非平凡的限制A, 使得对应的k-SAT(1,A), #k-SAT(1,A)以及Max-k-SAT(1,A)问题都是多项式时间或者伪多项式时间可解的。

     

    Abstract: We study the Boolean satisfiability problem (SAT) restricted on input formulas for which there are linear arithmetic constraints imposed on the indices of variables occurring in the same clause. This can be seen as a structural counterpart of Schaefer’s dichotomy theorem which studies the SAT problem with additional constraints on the assigned values of variables in the same clause. More precisely, let k-SAT(m,A) denote the SAT problem restricted on instances of k-CNF formulas, in every clause of which the indices of the last k−m variables are totally decided by the first m ones through some linear equations chosen from A. For example, if A contains i3=i1+2i2 and i4=i2−i1+1, then a clause of the input to 4-SAT(2,A) has the form yi1yi2yi1+2i2yi2-i1+1, with yi being xi or xi. We obtain the following results: 1) If m ≥ 2, then for any set A of linear constraints, the restricted problem k-SAT(m,A) is either in P or NP-complete assuming P ≠ NP. Moreover, the corresponding #SAT problem is always #P-complete, and the Max-SAT problem does not allow a polynomial time approximation scheme assuming P ≠ NP. 2) m=1, that is, in every clause only one index can be chosen freely. In this case, we develop a general framework together with some techniques for designing polynomial-time algorithms for the restricted SAT problems. Using these, we prove that for any A, #2-SAT(1,A) and Max-2-SAT(1,A) are both polynomial-time solvable, which is in sharp contrast with the hardness results of general #2-SAT and Max-2-SAT. For fixed k ≥ 3, we obtain a large class of non-trivial constraints A, under which the problems k-SAT(1,A), #k-SAT(1,A) and Max-k-SAT(1,A) can all be solved in polynomial time or quasi-polynomial time.

     

/

返回文章
返回