We use cookies to improve your experience with our site.

字母重叠图的一些指标

Some Indices of Alphabet Overlap Graph

  • 摘要: 无向de bruijn 图有很多好的性质,比如较小的直径、 较大的顶点度等, 经常用来做通讯网络的设计。 本文中,我们考虑了字母重叠图G(k, d, s):它的顶点集为V=v|v=(v1...vk);vi∈1, 2,..., d, i=1, 2,..., k。两个不同的顶点u=(u1... uk), v=(v1... vk)相邻,当且仅当us+i=vi或者vs+i=ui (i=1, 2,..., k-s)。特别是当s=1时,G(k, d, s)正好是无向de bruijn 图。 在此文中,首先,我们给出了计算G(k, d, s)的顶点度的公式;其次,我们应用Menger定理证明了当 时, G(k, d, s)的连通度为2ds-2d2s-k

     

    Abstract: The undirected de Bruijn graph is often used as the model of communication network for its useful properties, such as short diameter, small maximum vertex degree. In this paper, we consider the alphabet overlap graph G(k, d, s): the vertex set V=v|v=(v1...vk); vi∈1, 2,..., d, i=1, 2,..., k; they are distinct and two vertices u=(u1... uk) and v=(v1... vk) are adjacent if and only if us+i=vi or vs+i=ui (i=1, 2,..., k-s). In particular, when s=1, G(k, d, s) is just an undirected de Bruijn graph. First, we give a formula to calculate the vertex degree of G(k, d, s). Then, we use the corollary of Menger’s theorem to prove that the connectivity of G(k, d, s) is 2ds-2d2s-k for sk/2.

     

/

返回文章
返回